首页> 外文期刊>ACM Transactions on Spatial Algorithms and Systems >Flood-Risk Analysis on Terrains under the Multiflow-Direction Model
【24h】

Flood-Risk Analysis on Terrains under the Multiflow-Direction Model

机译:多流向模型下的地形洪水风险分析

获取原文
获取原文并翻译 | 示例

摘要

An important problem in terrain analysis is modeling how water flows across a terrain and creates floods by filling up depressions. In this article, we study a number of flood-risk related problems: Given a terrain ∑, represented as a triangulated xy-monotone surface with n vertices, a rain distribution R, and a volume of rain ψ, determine which portions of ∑ are flooded. We develop efficient algorithms for flood-risk analysis under the multiflow-directions (MFD) model, in which water at a point can flow along multiple downslope edges and which more accurately represent flooding events. We present three main results: First, we present an O(n log n)-time algorithm to answer a terrain-flood query: if it rains a volume ψ according to a rain distribution R, determine what regions of ∑ will be flooded. Second, we present a O(n log n + nm)-time algorithm for preprocessing ∑ containing m sinks into a data structure of size O(nm) for answering point-flood queries: Given a rain distribution R, a volume of rain ψ falling according to R, and point q ∈ ∑, determine whether q will be flooded. A point-flood query can be answered in O(|R|k + k~2) time, where k is the number of maximal depressions in ∑ containing the query point q and |R| is the number of vertices in R with positive rainfall. Finally, we present algorithms for answering a flood-time query: given a rain distribution R and a point q∈ ∑ X, determine the volume of rain that must fall before q is flooded. Assuming that the product of two k x k matrices can be computed in O(k~ω) time, we show that a flood-time query can be answered in O(nk + k~ω) time. We also give an α-approximation algorithm, for α > 1, which runs in O(n log n log_α ρ)-time, where ρ is a variable on the terrain that depends on the ratio between depression volumes. We implemented our algorithms for computing terrain and point-flood queries as well as approximate flood-time queries. We tested the efficacy and efficiency of these algorithms on three real terrains of different types (urban, suburban, and mountainous.) Terrains; flood-risk analysis; merge trees
机译:地形分析中的一个重要问题是对水如何流经地形并通过填满洼地造成洪水进行建模。在本文中,我们研究了许多与洪水风险相关的问题:给定一个地形∑(表示为具有n个顶点的三角xy单调表面,降雨分布R和降雨量ψ),确定∑的哪些部分被淹。我们开发了一种在多流向(MFD)模型下进行洪水风险分析的有效算法,其中一点处的水可以沿着多个下坡边缘流动,并且可以更准确地表示洪水事件。我们给出三个主要结果:首先,我们给出O(n log n)-时间算法来回答地形洪水查询:如果根据降雨分布R降雨了体积ψ,则确定∑的哪些区域将被洪水淹没。其次,我们提出一种O(n log n + nm)时间算法,用于将包含m个汇的∑预处理为大小为O(nm)的数据结构,以回答点洪水查询:给定降雨分布R,降雨量ψ根据R下降,并确定q∈∑,确定q是否将被淹没。点洪查询可以在O(| R | k + k〜2)时间内回答,其中k是∑中包含查询点q和| R |的最大凹陷数。是R中具有正降雨的顶点数。最后,我们提出了用于回答洪水时间查询的算法:给定降雨分布R和点q∈∑ X,确定在q洪水之前必须降下的降雨量。假设可以在O(k〜ω)时间中计算两个k x k矩阵的乘积,我们表明可以在O(nk + k〜ω)时间中回答泛洪时间查询。对于α> 1,我们还给出了一种α近似算法,该算法以O(n log nlog_αρ)-时间运行,其中ρ是地形上的变量,其取决于凹陷体积之间的比率。我们实现了用于计算地形和点洪水查询以及近似洪水时间查询的算法。我们在三个不同类型(城市,郊区和山区)的真实地形上测试了这些算法的功效和效率。洪水风险分析;合并树

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号