首页> 外文期刊>ACM transactions on software engineering and methodology >A Stack Memory Abstraction and Symbolic Analysis Framework for Executables
【24h】

A Stack Memory Abstraction and Symbolic Analysis Framework for Executables

机译:可执行文件的堆栈内存抽象和符号分析框架

获取原文
获取原文并翻译 | 示例

摘要

This article makes three contributions regarding reverse-engineering of executables. First, techniques are presented for recovering a precise and correct stack-memory model in executables while addressing executable-specific challenges such as indirect control transfers. Next, the enhanced memory model is employed to define a novel symbolic analysis framework for executables that can perform the same types of program analyses as source-level tools. Third, a demand-driven framework is presented to enhance the scalability of the symbolic analysis framework. Existing symbolic analysis frameworks for executables fail to simultaneously maintain the properties of correct representation, a precise stack-memory model, and scalability. Furthermore, they ignore memory-allocated variables when defining symbolic analysis mechanisms. Our methods do not use symbolic, relocation or debug information, which are usually absent in deployed binaries. We describe our framework, highlighting the novel intellectual contributions of our approach and demonstrating its efficacy and robustness. Our techniques improve the precision of existing stack-memory models by 25%, enhance scalability of our basic symbolic analysis mechanism by 10×, and successfully uncovers five previously undiscovered information-flow vulnerabilities in several widely used programs.
机译:本文对可执行文件的逆向工程做出了三点贡献。首先,提出了在可执行文件中恢复精确且正确的堆栈内存模型的技术,同时解决了可执行文件特定的挑战,例如间接控制转移。接下来,采用增强的内存模型为可执行文件定义一种新颖的符号分析框架,该可执行文件可以执行与源代码级工具相同类型的程序分析。第三,提出了一个需求驱动的框架,以增强符号分析框架的可伸缩性。现有的可执行文件符号分析框架无法同时维护正确表示的属性,精确的堆栈内存模型和可伸缩性。此外,在定义符号分析机制时,它们会忽略内存分配的变量。我们的方法不使用通常在部署的二进制文件中不存在的符号,重定位或调试信息。我们描述了我们的框架,强调了我们方法的新颖智力贡献,并展示了其有效性和鲁棒性。我们的技术将现有堆栈内存模型的精度提高了25%,将基本符号分析机制的可伸缩性提高了10倍,并成功地在几个广泛使用的程序中发现了五个以前未发现的信息流漏洞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号