首页> 外文期刊>ACM transactions on sensor networks >Localized Policy-Based Target Tracking Using Wireless Sensor Networks
【24h】

Localized Policy-Based Target Tracking Using Wireless Sensor Networks

机译:使用无线传感器网络进行基于策略的本地化目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Wireless Sensor Networks (WSN)-based surveillance applications necessitate tracking a target's trajectory with a high degree of precision. Further, target tracking schemes should consider energy consumption in these resource-constrained networks. In this work, we propose an energy-efficient target tracking algorithm, which minimizes the number of nodes in the network that should be activated for tracking the movement of the target. We model the movement of a target based on the Gauss Markov Mobility Model [Camp et al. 2002]. On detecting a target, the cluster head which detects it activates an optimal number of nodes within its cluster, so that these nodes start sensing the target. A Markov Decision Process (MDP)-based framework is designed to adaptively determine the optimal policy for selecting the nodes localized with each cluster. As the distance between the node and the target decreases, the Received Signal Strength (RSS) increases, thereby increasing the precision of the readings of sensing the target at each node. Simulations show that our proposed algorithm is energy-efficient. Also, the accuracy of the tracked trajectory varies between 50% to 1% over time.
机译:基于无线传感器网络(WSN)的监视应用程序需要高精度地跟踪目标的轨迹。此外,目标跟踪方案应考虑这些资源受限网络中的能耗。在这项工作中,我们提出了一种节能目标跟踪算法,该算法将网络中应被激活以跟踪目标运动的节点数量减至最少。我们基于高斯马尔可夫移动模型[Camp等。 2002]。在检测到目标时,检测到目标的簇头会激活其簇中的最佳节点数,以便这些节点开始感知目标。设计基于Markov决策过程(MDP)的框架,以自适应地确定用于选择随每个群集定位的节点的最佳策略。随着节点与目标之间的距离减小,接收信号强度(RSS)增大,从而提高了在每个节点处感测目标的读数的精度。仿真表明,我们提出的算法是节能的。而且,跟踪轨迹的精度会随时间在50%到1%之间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号