首页> 外文期刊>ACM transactions on sensor networks >Quantization, Channel Compensation, and Optimal Energy Allocation for Estimation in Sensor Networks
【24h】

Quantization, Channel Compensation, and Optimal Energy Allocation for Estimation in Sensor Networks

机译:传感器网络中的量化,信道补偿和最佳能量分配

获取原文
获取原文并翻译 | 示例

摘要

In clustered networks of wireless sensors, each sensor collects noisy observations of the environment, quantizes these observations into a local estimate of finite length, and forwards them through one or more noisy wireless channels to the cluster head (CH). The measurement noise is assumed to be zero-mean and have finite variance, and each wireless hop is modeled as a binary symmetric channel (BSC) with a known crossover probability. A novel scheme is proposed that uses dithered quantization and channel compensation to ensure that each sensor's local estimate received by the CH is unbiased. The CH fuses these unbiased local estimates into a global one, using a best linear unbiased estimator (BLUE). Analytical and simulation results show that the proposed scheme can achieve much smaller mean square error (MSE) than two other common schemes, while using the same amount of energy. The sensitivity of the proposed scheme to errors in estimates of the crossover probability of the BSC channel is studied by both analysis and simulation. We then determine both the minimum energy required for the network to produce an estimate with a prescribed error variance and how this energy must be allocated amongst the sensors in the multihop network.
机译:在无线传感器的群集网络中,每个传感器收集对环境的嘈杂观测,将这些观测量化为有限长度的本地估计,然后通过一个或多个嘈杂的无线信道将其转发到群集头(CH)。假定测量噪声为零均值且具有有限的方差,并且将每个无线跃点建模为具有已知交叉概率的二进制对称信道(BSC)。提出了一种新颖的方案,该方案使用抖动量化和信道补偿来确保CH接收到的每个传感器的本地估计是无偏的。 CH使用最佳线性无偏估计量(BLUE)将这些无偏局部估计融合为全局估计。分析和仿真结果表明,与使用其他两种常见方案相比,该方案在使用相同数量的能量的情况下,可以实现更小的均方误差(MSE)。通过分析和仿真研究了所提出的方案对BSC信道的交叉概率估计中的误差的敏感性。然后,我们确定网络产生具有规定误差方差的估计值所需的最小能量,以及如何在多跳网络的传感器之间分配此能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号