首页> 外文期刊>ACM transactions on sensor networks >Fusion-Based Volcanic Earthquake Detection and Timing in Wireless Sensor Networks
【24h】

Fusion-Based Volcanic Earthquake Detection and Timing in Wireless Sensor Networks

机译:无线传感器网络中基于融合的火山地震检测与计时

获取原文
获取原文并翻译 | 示例

摘要

Volcano monitoring is of great interest to public safety and scientific explorations. However, traditional volcanic instrumentation such as broadband seismometers are expensive, power hungry, bulky, and difficult to install. Wireless sensor networks (WSNs) offer the potential to monitor volcanoes on unprecedented spatial and temporal scales. However, current volcanic WSN systems often yield poor monitoring quality due to the limited sensing capability of low-cost sensors and unpredictable dynamics of volcanic activities. In this article, we propose a novel quality-driven approach to achieving real-time, distributed, and long-lived volcanic earthquake detection and timing. By employing novel in-network collaborative signal processing algorithms, our approach can meet stringent requirements on sensing quality (i.e., low false alarm/missing rate, short detection delay, and precise earthquake onset time) at low power consumption. We have implemented our algorithms in TinyOS and conducted extensive evaluation on a testbed of 24 TelosB motes as well as simulations based on real data traces collected during 5.5 months on an active volcano. We show that our approach yields near-zero false alarm/missing rate, less than one second of detection delay, and millisecond precision earthquake onset time while achieving up to six-fold energy reduction over the current data collection approach.
机译:火山监测对公共安全和科学探索非常感兴趣。但是,诸如宽带地震仪之类的传统火山仪器价格昂贵,耗电,体积大并且难以安装。无线传感器网络(WSN)提供了以空前的时空尺度监视火山的潜力。但是,由于低成本传感器的感应能力有限以及火山活动的不可预测的动态,当前的火山WSN系统通常会产生较差的监测质量。在本文中,我们提出了一种新颖的质量驱动方法,以实现实时,分布式和长寿命的火山地震检测和定时。通过采用新颖的网络内协作信号处理算法,我们的方法可以在低功耗下满足对传感质量的严格要求(即低虚警/漏失率,较短的检测延迟和精确的地震发作时间)。我们已经在TinyOS中实现了我们的算法,并在24个TelosB微粒的测试台上进行了广泛的评估,并基于在活动火山上5.5个月内收集的真实数据跟踪进行了模拟。我们证明了我们的方法产生的错误警报/丢失率几乎为零,检测延迟不到一秒钟,并且地震发生时间为毫秒级,同时与目前的数据收集方法相比,能耗降低了六倍。

著录项

  • 来源
    《ACM transactions on sensor networks》 |2013年第2期|17.1-17.25|共25页
  • 作者单位

    Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824;

    Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824;

    Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824;

    Department of Computer Science, Georgia State University, Atlanta, GA 30303;

    School of Electrical Engineering and Computer Science,Washington State University, Vancouver, WA 98686;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    volcano monitoring; earthquake detection; data fusion; wireless sensor network;

    机译:火山监测;地震检测;数据融合;无线传感器网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号