首页> 外文期刊>ACM transactions on sensor networks >Sampling and Classifying Interference Patterns in a Wireless Sensor Network
【24h】

Sampling and Classifying Interference Patterns in a Wireless Sensor Network

机译:无线传感器网络中的干扰模式采样和分类

获取原文
获取原文并翻译 | 示例

摘要

The low-powered transmissions in a wireless sensor network (WSN) are highly susceptible to interference from external sources. Our work is a step towards enabling WSN devices to better understand the interference in their environment so that they can adapt to it and communicate more efficiently. We extend our previous work in which we collected received signal strength traces using mote-class synchronized receivers at sample rates that are, to the best of our knowledge, higher than previously described in the literature. These traces contain distinct interference patterns, each with a different potential for being exploited by cognitive radio strategies. In order to exploit a pattern, however, a node must first recognize it. Given the energy and space constraints of a node, we explore succinct decision tree classifiers for the two most disruptive patterns. We expand on a basic feature set to incorporate attributes based on the dip statistic and the Lomb periodogram, both of which address specific, empirically observed behaviour, and we show their positive impact on both the decision tree structure and the overall classification performance. Moreover, we present an approximation of the periodogram that makes its construction feasible for mote-class devices, and we describe the simplification's impact on classification performance.
机译:无线传感器网络(WSN)中的低功率传输极易受到来自外部源的干扰。我们的工作是朝着使WSN设备更好地了解其环境中的干扰迈出了一步,以便它们能够适应并更有效地进行通信。我们扩展了以前的工作,在该工作中,我们使用微粒级同步接收器以采样率收集了接收到的信号强度轨迹,据我们所知,采样率比文献中先前描述的要高。这些迹线包含不同的干扰模式,每个模式都有被认知无线电策略利用的不同潜力。但是,为了利用模式,节点必须首先识别它。给定一个节点的能量和空间约束,我们针对两种最具破坏性的模式探索简洁的决策树分类器。我们扩展了一个基本功能集,以结合基于倾角统计和Lomb周期图的属性,它们都针对特定的,通过经验观察到的行为,并且我们展示了它们对决策树结构和整体分类性能的积极影响。此外,我们提出了周期图的近似值,使其可以用于微粒级设备,并且我们描述了简化对分类性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号