首页> 外文期刊>ACM transactions on sensor networks >Not Every Bit Counts: Data-Centric Resource Allocation for Correlated Data Gathering in Machine-to-Machine Wireless Networks
【24h】

Not Every Bit Counts: Data-Centric Resource Allocation for Correlated Data Gathering in Machine-to-Machine Wireless Networks

机译:并非每一位都很重要:机器对机器无线网络中相关数据收集的以数据为中心的资源分配

获取原文
获取原文并翻译 | 示例

摘要

Many applications involving machine-to-machine (M2M) communications are characterized by the large amount of data to transport. To support these M2M applications, we argue in this article that instead of focusing on serving individual machines with better quality, one should focus on solutions that can better serve the data itself. To substantiate, we consider the application of data gathering from a set of machines that communicate directly to an aggregator. Since the aggregator has limited radio resources, the problem arises as to how the resource can be effectively utilized for supporting such an application. We investigate "datacentric" resource allocation that aims to maximize information entropy of data collected through selecting the subset of machines to transmit, determining the amount of resources to allocate, and scheduling the sequence of transmissions. We present two instantiations of the problems when machines can perform distributed source coding or dependent source coding based on the data overheard from neighboring machines and then propose algorithms for solving the joint optimization problems. Evaluation results show that compared to conventional "machine-centric" resource allocation that aims to maximize the aggregate data rates or number of supported machines, "data-centric" resource allocation exhibits significant performance gain in terms of the quality of data that can be collected for the given amount of radio resources.
机译:许多涉及机器对机器(M2M)通信的应用程序的特点是要传输大量数据。为了支持这些M2M应用程序,我们在本文中认为,与其专注于为更好的质量提供服务,不如专注于可以更好地服务于数据本身的解决方案。为了证实这一点,我们考虑了从一组直接与聚合器通信的机器中收集数据的应用。由于聚合器的无线电资源有限,因此出现了如何有效利用资源来支持此类应用程序的问题。我们研究“以数据为中心”的资源分配,该资源旨在通过选择要传输的机器子集,确定要分配的资源量以及安排传输顺序来最大化收集到的数据的信息熵。当机器可以基于从相邻机器窃听的数据执行分布式源代码编码或从属源代码编码时,我们提出了两个问题的实例,然后提出了解决联合优化问题的算法。评估结果表明,与旨在最大程度地提高总数据速率或受支持机器数量的常规“以机器为中心”的资源分配相比,“以数据为中心”的资源分配在可收集的数据质量方面表现出显着的性能提升给定数量的无线电资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号