首页> 外文期刊>ACM transactions on reconfigurable technology and systems >Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms
【24h】

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms

机译:在可重配置平台上流式传输大而密集数据的自动化实时分析

获取原文
获取原文并翻译 | 示例

摘要

We propose SSketch, a novel automated framework for efficient analysis of dynamic big data with dense (non-sparse) correlation matrices on reconfigurable platforms. Ssketch targets streaming applications where each data sample can be processed only once and storage is severely limited. Our framework adaptively learns from the stream of input data and updates a corresponding ensemble of lower-dimensional data structures, a.k.a., a sketch matrix. A new sketching methodology is introduced that tailors the problem of transforming the big data with dense correlations to an ensemble of lower-dimensional subspaces such that it is suitable for hardware-based acceleration performed by reconfigurable hardware. The new method is scalable, while it significantly reduces costly memory interactions and enhances matrix computation performance by leveraging coarse-grained parallelism existing in the dataset. Ssketch provides an automated optimization methodology for creating the most accurate data sketch for a given set of user-defined constraints, including runtime and power as well as platform constraints such as memory. To facilitate automation, Ssketch takes advantage of a Hardware/Software (HW/SW) co-design approach: It provides an Application Programming Interface that can be customized for rapid prototyping of an arbitrary matrix-based data analysis algorithm. Proof-of-concept evaluations on a variety of visual datasets with more than 11 million non-zeros demonstrate up to a 200-fold speedup on our hardware-accelerated realization of Ssketch compared to a software-based deployment on a general-purpose processor.
机译:我们提出SSketch,这是一种新颖的自动化框架,用于在可重配置平台上使用密集(非稀疏)相关矩阵对动态大数据进行高效分析。 Ssketch面向流应用程序,其中每个数据样本只能处理一次,并且存储受到严重限制。我们的框架从输入数据流中自适应学习并更新相应的低维数据结构集合,也称为草图矩阵。引入了一种新的草图绘制方法,该方法可解决将具有密集相关性的大数据转换为低维子空间集合的问题,从而使其适合于由可重构硬件执行的基于硬件的加速。新方法具有可扩展性,同时它通过利用数据集中存在的粗粒度并行机制,大大减少了昂贵的内存交互并提高了矩阵计算性能。 Ssketch提供了一种自动优化方法,可为给定的一组用户定义的约束(包括运行时和功耗以及平台约束(例如内存))创建最准确的数据草图。为了促进自动化,Ssketch利用硬件/软件(HW / SW)协同设计方法:它提供了一个应用程序编程接口,可以对该应用程序编程接口进行自定义,以快速构建基于矩阵的任意数据分析算法的原型。对具有超过1100万个非零值的各种视觉数据集进行概念验证的评估证明,与在通用处理器上基于软件的部署相比,我们的硬件加速实现Ssketch的速度提高了200倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号