首页> 外文期刊>ACM Transactions on Parallel Computing >Dynamic Representations of Sparse Distributed Networks: A Locality-sensitive Approach
【24h】

Dynamic Representations of Sparse Distributed Networks: A Locality-sensitive Approach

机译:稀疏分布式网络的动态表示:一种地方敏感方法

获取原文
获取原文并翻译 | 示例

摘要

In 1999, Brodal and Fagerberg (BF) gave an algorithm for maintaining a low outdegree orientation of a dynamic uniformly sparse graph. Specifically, for a dynamic graph on n-vertices, with arboricity bounded by α at all times, the BF algorithm supports edge updates in O(log n) amortized update time, while keeping the maximum outdegree in the graph bounded by O(α). Such an orientation provides a basic data structure for uniformly sparse graphs, which found applications to several dynamic graph algorithms, including adjacency queries and labeling schemes, maximal and approximate matching, approximate vertex cover, forest decomposition, and distance oracles. A significant weakness of the BF algorithm is the possible temporary blowup of the maximum outdegree, following edge insertions. Although BF eventually reduces all outdegrees to O(α), some vertices may reach an outdegree of Ω(n) during the process, and hence local memory usage at the vertices, which is an important quality measure in distributed systems, cannot be bounded. We show how to modify the BF algorithm to guarantee that the outdegrees of all vertices are bounded by O(α) at all times, without hurting any of its other properties and present an efficient distributed implementation of the modified algorithm. This provides the first representation of distributed networks in which the local memory usage at all vertices is bounded by the arboricity (which is essentially the average degree of the densest subgraph) rather than the maximum degree. For settings where there is no strict limitation on the local memory, one may take the temporary outdegree blowup to the extreme and allow a permanent outdegree blowup. This allows us to address the second significant weakness of the BF algorithm-its inherently global nature: An insertion of an edge (u, v) may trigger changes in the orientations of edges that are arbitrarily far away from u and v. Such a non-local scheme may be prohibitively expensive in various practical applications. We suggest an alternative local scheme, which does not guarantee any outdegree bound on the vertices, yet is just as efficient as the BF scheme for some of the aforementioned applications. For example, we obtain a local dynamic algorithm for maintaining a maximal matching with sub-logarithmic update time in uniformly sparse networks, providing an exponential improvement over the state of the art in this context. We also present a distributed implementation of this scheme and some of its applications.
机译:在1999年,大理和Fagerberg(BF)给出了一种算法,用于维持动态均匀稀疏图的低顽固方向。具体地,对于n顶点上的动态图形,始终有α的树突,BF算法支持O(log n)摊销更新时间的边缘更新,同时保持由O(α)界定的图表中的最大undyegeeg 。这种方向提供了一种均匀稀疏图的基本数据结构,它发现了多个动态图算法,包括邻接查询和标记方案,最大和近似匹配,近似顶点覆盖,森林分解和距离oracels。 BF算法的显着弱点是最大仓库的可能暂时吹气,遵循边缘插入。尽管BF最终将所有误区减少到O(α),但是在该过程期间,某些顶点可以达到ω(n)的欠仓,因此在顶点处的本地存储器使用,这是分布式系统中的重要质量测量。我们展示了如何修改BF算法,以保证所有顶点的赘言始终受到o(α)的界限,而不会损害其其他特性并呈现修改算法的有效分布式实现。这提供了分布式网络的第一表示,其中所有顶点的本地存储器使用由树突(其基本上是最大程度的平均程度)而不是最大程度。对于在本地内存没有严格限制的情况下,可以将临时的仓鼠爆炸吹到极端并允许永久的仓库爆炸。这使我们能够解决BF算法-其固有的全球性的第二显著弱点:一个边缘的插入(U,V)可以触发在边缘是任意远离u和的取向变化v的非 - 在各种实际应用中,识别方案可能对昂贵的昂贵。我们建议替代的本地方案,不保证在顶点上的任何仓库绑定,但与一些上述应用程序的BF方案一样高。例如,我们获得了一种局部动态算法,用于维持与均匀稀疏网络中的子对数更新时间的最大匹配,在此上下文中提供对现有技术的指数改进。我们还提供了该方案的分布式实施和其一些应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号