首页> 外文期刊>ACM Transactions on Parallel Computing >Fast Distributed Algorithms for Connectivity and MST in Large Graphs
【24h】

Fast Distributed Algorithms for Connectivity and MST in Large Graphs

机译:大图的连通性和MST的快速分布式算法

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the increasing need to understand the algorithmic foundations of distributed large-scale graph computations, we study a number of fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main result is an (almost) optimal distributed randomized algorithm for graph connectivity. Our algorithm runs in O(n/k~2) rounds (O notation hides a polylog(n) factor and an additive polylog(n) term). This improves over the best previously known bound of O(n/k) [Klauck et al., SODA 2015] and is optimal (up to a polylogarithmic factor) in light of an existing lower bound of Ω(n/k~2). Our improved algorithm uses a bunch of techniques, including linear graph sketching, that prove useful in the design of efficient distributed graph algorithms. Using the connectivity algorithm as a building block, we then present fast randomized algorithms for computing minimum spanning trees, (approximate) min-cuts, and for many graph verification problems. All these algorithms take O(n/k~2) rounds and are optimal up to polylogarithmic factors. We also show an almost matching lower bound of Ω(n/k~2) rounds for many graph verification problems by leveraging lower bounds in random-partition communication complexity.
机译:由于越来越需要了解分布式大规模图形计算的算法基础,我们在分布式计算的消息传递模型中研究了许多基本图形问题,其中k≥2台机器共同对n个节点的图形执行计算(通常,n >> k)。假定输入图最初是在k台机器之间随机分配的,这是许多实际系统中的常见实现。通信是点对点的,目标是使计算的通信回合次数最少。我们的主要结果是一种(几乎)最优的图连通性分布式随机算法。我们的算法在O(n / k〜2)轮中运行(O标记隐藏了polylog(n)因子和加法polylog(n)项)。相对于O(n / k)的最佳已知界限,此方法有所改进[Klauck等人,SODA 2015],并且根据现有的Ω(n / k〜2)下界是最佳的(至多对数因子) 。我们改进的算法使用了一系列技术,包括线性图素描,这些技术在设计高效的分布式图算法中被证明是有用的。然后,以连通性算法为基础,我们提出了快速随机算法,用于计算最小生成树,(近似)最小割以及许多图形验证问题。所有这些算法都经过O(n / k〜2)次回合,并且对多对数因子而言是最优的。通过利用随机分区通信复杂性中的下限,我们还显示了许多图验证问题的Ω(n / k〜2)个回合的几乎匹配下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号