首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks for Fake News Detection
【24h】

Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks for Fake News Detection

机译:知识感知的多模态自适应图卷积网络用于假新闻检测

获取原文
获取原文并翻译 | 示例

摘要

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.
机译:在本文中,我们专注于假新闻检测任务,并旨在自动从大量的社交媒体帖子中识别假新闻。迄今为止,已经提出了许多方法来检测假新闻,其中包括传统的学习方法和基于深度学习的模型。但是,存在三个现有的挑战:(i)如何有效地代表社交媒体帖子,因为职位内容是各种和高度复杂的; (ii)如何提出数据驱动方法以提高模型的灵活性,以处理不同上下文和新闻背景中的样本; (iii)如何充分利用员额的额外辅助信息(背景知识和多模态信息)以获得更好的代表学习。为了解决上述挑战,我们提出了一种新颖的知识意识的多模式自适应图卷积网络(KMAGCN),通过将文本信息,知识概念和视觉信息共同建模为假新闻检测的统一框架来捕获语义表示。我们将帖子作为图表,并使用知识感知的多模态自适应图学习校长进行有效特征学习。与现有方法相比,提议的KMAGCN解决了三个方面的挑战:(1)IT模型作为捕获非连续和远程语义关系的图表。 (2)提出了一种新颖的自适应图形卷积网络,以处理图数据的可变性; (3)它利用文本信息,知识概念和视觉信息,共同为模型学习。我们对三个公共现实世界数据集进行了广泛的实验,卓越的结果展示了与其他最先进的算法相比的kmagcn的有效性。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci 95 ZhongGuanChun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci 95 ZhongGuanChun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci 95 ZhongGuanChun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China|Peng Cheng Lab 95 ZhongGuanChun East Rd Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fake news detection; graph convolutional network; multi-modal learning;

    机译:假新闻检测;图卷积网络;多模态学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号