首页> 外文期刊>ACM transactions on multimedia computing communications and applications >GreyRelD: A Novel Two-stream Deep Framework with RGB-grey Information for Person Re-identification
【24h】

GreyRelD: A Novel Two-stream Deep Framework with RGB-grey Information for Person Re-identification

机译:Greyreld:一种新型的双流深框架,具有RGB-Grey信息,用于人员重新识别

获取原文
获取原文并翻译 | 示例

摘要

In this article, we observe that most false positive images (i.e., different identities with query images) in the top ranking list usually have the similar color information with the query image in person re-identification (Re-ID). Meanwhile, when we use the greyscale images generated from RGB images to conduct the person Re-ID task, some hard query images can obtain better performance compared with using RGB images. Therefore, RGB and greyscale images seem to be complementary to each other for person Re-ID. In this article, we aim to utilize both RGB and greyscale images to improve the person Re-ID performance. To this end, we propose a novel two-stream deep neural network with RGB-grey information, which can effectively fuse RGB and greyscale feature representations to enhance the generalization ability of Re-ID. First, we convert RGB images to greyscale images in each training batch. Based on these RGB and greyscale images, we train the RGB and greyscale branches, respectively. Second, to build up connections between RGB and greyscale branches, we merge the RGB and greyscale branches into a new joint branch. Finally, we concatenate the features of all three branches as the final feature representation for Re-ID. Moreover, in the training process, we adopt the joint learning scheme to simultaneously train each branch by the independent loss function, which can enhance the generalization ability of each branch. Besides, a global loss function is utilized to further fine-tune the final concatenated feature. The extensive experiments on multiple benchmark datasets fully show that the proposed method can outperform the state-of-the-art person Re-ID methods. Furthermore, using greyscale images can indeed improve the person Re-ID performance in the proposed deep framework.
机译:在本文中,我们观察到顶部排名列表中的大多数假正图像(即,与查询图像的不同身份)通常具有与人重新识别(RE-ID)的查询图像的类似颜色信息。同时,当我们使用从RGB图像生成的灰度图像来进行人员重新ID任务时,与使用RGB图像相比,一些硬质查询图像可以获得更好的性能。因此,RGB和灰度图像似乎对人的重新ID彼此互补。在本文中,我们的目标是利用RGB和GreyScale图像来改善人员重新ID性能。为此,我们提出了一种具有RGB-灰度信息的新型双流深神经网络,其可以有效地熔断RGB和灰度特征表示,以提高重新ID的泛化能力。首先,我们将RGB图像转换为每个训练批处理中的灰度图像。基于这些RGB和灰度图像,我们分别培训RGB和灰度分支。其次,要在RGB和GreyScale分支之间建立连接,我们将RGB和GreyScale分支合并到新的联合分支机构中。最后,我们将所有三个分支的功能连接为RE-ID的最终特征表示。此外,在培训过程中,我们采用联合学习方案同时通过独立损失函数培训每个分支,这可以提高每个分支的泛化能力。此外,全局损失函数用于进一步微调最终的连接特征。在多个基准数据集上的广泛实验完全显示了所提出的方法可以优于最先进的人的重新ID方法。此外,使用灰度图像可以确实可以在所提出的深度框架中提高人员重新ID性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号