首页> 外文期刊>Neurocomputing >Partial person re-identification with two-stream network and reconstruction
【24h】

Partial person re-identification with two-stream network and reconstruction

机译:用双流网络重新识别部分人员重新识别

获取原文
获取原文并翻译 | 示例

摘要

Partial person re-identification is a challenging issue at present. However, affected by occlusions, features in person re-identification cannot be detected and the traditional person re-identification methods can not accurately deal with it. In order to solve this problem, we propose to match query and gallery by combining different modes from two-stream network with sparse reconstruction to realize partial person re-identification. For acquiring features, bilinear pooling is applied to fuse the two different modes from the appearance network and pose network aiming at better performance. For matching query and galley, the robust sparse representation reconstructs the features extracted by the network for flexible solution, using the parameters learned from galley. The reconstruction process achieves arbitrary size images in partial person re-identification. In addition, we extract mid-level feature and fuse it with the high-level feature for more accuracy. Experiments demonstrate the performance of the proposed method better compared with the methods of state-of-the-art person re-identification methods on dataset Market1501, CUHK03, DukeMTMC-reID and partial person dataset Partial-REID, Partial-iLIDS. (C) 2019 Elsevier B.V. All rights reserved.
机译:部分人重新识别目前是一个具有挑战性的问题。然而,受遮挡影响,无法检测到人员重新识别的特征,并且传统的人重新识别方法无法准确处理它。为了解决这个问题,我们建议通过将不同模式从两个流网络与稀疏重建组合来实现部分人重新识别来匹配查询和库。为了获取功能,将双线性池应用于从外观网络和姿势网络融合两种不同模式,以更好的性能。对于匹配查询和厨房,强大的稀疏表示将通过从厨房中学到的参数来重建网络以实现灵活解决方案的功能。重建过程在部分人重新识别中实现任意尺寸图像。此外,我们提取中级功能并使用高级功能熔断器,以获得更多的准确性。实验证明了与DataSet Market1501,CuHK03,Dukemtmc-Reid和部分人数据集部分-Reid,部分-IlIDS的最先进的人重新识别方法的方法更好地表现了所提出的方法的性能。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul20期|453-459|共7页
  • 作者单位

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Zhejiang Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Zhejiang Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Key Lab Complex Syst Modeling & Simulat Hangzhou 310018 Zhejiang Peoples R China;

    Beijing Univ Posts & Telecommun Beijing 100876 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Partial person re-identification; Two-stream network; Reconstruction; Deep learning;

    机译:部分人重新识别;双流网络;重建;深入学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号