首页> 外文期刊>ACM transactions on multimedia computing communications and applications >An Image Privacy Protection Algorithm Based on Adversarial Perturbation Generative Networks
【24h】

An Image Privacy Protection Algorithm Based on Adversarial Perturbation Generative Networks

机译:一种基于对抗扰动生成网络的图像隐私保护算法

获取原文
获取原文并翻译 | 示例

摘要

Today, users of social platforms upload a large number of photos. These photos contain personal private information, including user identity information, which is easily gleaned by intelligent detection algorithms. To thwart this, in this work, we propose an intelligent algorithm to prevent deep neural network (DNN) detectors from detecting private information, especially human faces, while minimizing the impact on the visual quality of the image. More specifically, we design an image privacy protection algorithm by training and generating a corresponding adversarial sample for each image to defend DNN detectors. In addition, we propose an improved model based on the previous model by training an adversarial perturbation generative network to generate perturbation instead of training for each image. We evaluate and compare our proposed algorithm with other methods on wider face dataset and others by three indicators: Mean average precision, Averaged distortion, and Time spent. The results show that our method significantly interferes with DNN detectors while causing weak impact to the visual quality of images, and our improved model does speed up the generation of adversarial perturbations.
机译:今天,社交平台的用户上传了大量照片。这些照片包含个人私人信息,包括用户身份信息,可以通过智能检测算法轻松收集。为了挫败这一点,在这项工作中,我们提出了一种智能算法,以防止深度神经网络(DNN)检测器检测私人信息,尤其是人面,同时最小化对图像的视觉质量的影响。更具体地,我们通过训练设计图像隐私保护算法,并为每个图像生成相应的对抗性样本来保护DNN探测器。此外,我们通过训练对抗扰动生成网络来生成扰动而不是每个图像的训练来提出基于先前模型的改进模型。我们将建议的算法评估并使用更广泛的脸部数据集和其他指示器的其他方法进行比较:平均平均精度,平均失真和时间。结果表明,我们的方法显着干扰了DNN探测器,同时对图像的视觉质量造成薄弱的影响,我们改善的模型确实加速了对抗扰动的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号