首页> 外文期刊>ACM transactions on multimedia computing communications and applications >CryptoLesion: A Privacy-preserving Model for Lesion Segmentation Using Whale Optimization over Cloud
【24h】

CryptoLesion: A Privacy-preserving Model for Lesion Segmentation Using Whale Optimization over Cloud

机译:加密:使用云鲸优化的病变分割保护模型

获取原文
获取原文并翻译 | 示例

摘要

The low-cost, accessing flexibility, agility, and mobility of cloud infrastructures have attracted medical orga-nizations to store their high-resolution data in encrypted form. Besides storage, these infrastructures provide various image processing services for plain (non-encrypted) images. Meanwhile, the privacy and security of uploaded data depend upon the reliability of the service provider(s). The enforcement of laws towards privacy policies in health-care organizations, for not disclosing their patient's sensitive and private medical information, restrict them to utilize these services. To address these privacy concerns for melanoma detection, we propose CryptoLesion, a privacy-preserving model for segmenting lesion region using whale optimization algorithm (WOA) over the cloud in the encrypted domain (ED). The user's image is encrypted using a permutation ordered binary number system and a random stumble matrix. The task of segmentation is accomplished by dividing an encrypted image into a pre-defined number of clusters whose optimal centroids are obtained by WOA in ED, followed by the assignment of each pixel of an encrypted image to the unique centroid. The qualitative and quantitative analysis of CryptoLesion is evaluated over publicly available datasets provided in The International Skin Imaging Collaboration Challenges in 2016, 2017, 2018, and PH~2 dataset. The segmented results obtained by CryptoLesion are found to be comparable with the winners of respective challenges. CryptoLesion is proved to be secure from a probabilistic viewpoint and various cryptographic attacks. To the best of our knowledge, CryptoLesion is first moving towards the direction of lesion segmentation in ED.
机译:云基础架构的低成本,访问灵活性,敏捷性和移动性都吸引了医疗器官,以将其高分辨率数据以加密形式存储。除了存储外,这些基础架构还为平原(非加密)图像提供了各种图像处理服务。同时,上传数据的隐私和安全性取决于服务提供商的可靠性。对卫生保健组织的隐私政策执行法律,不披露患者的敏感和私人医疗信息,限制他们利用这些服务。为了解决对黑色素瘤检测的这些隐私问题,我们提出了在加密域(ED)中的云上使用鲸鱼优化算法(WOA)进行分割病变区的隐私保留模型。用户的图像使用置换有序二进制数字系统和随机偶数矩阵加密。分割的任务是通过将加密图像划分为预定义的簇数来完成,其最佳质心在ED中获得,然后将加密图像的每个像素分配给唯一质心。在2016年,2016年,2018年,2018年和PH〜2数据集中提供的公共可用数据集,在国际皮肤成像协作挑战中提供的可公开数据集进行定性和定量分析。发现通过密码获得的分段结果与各自挑战的获胜者相当。被证明是从概率的观点和各种密码攻击中获得的密码。据我们所知,密码首先朝向ED中的病变细分方向移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号