首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Learning Shared Semantic Space with Correlation Alignment for Cross-Modal Event Retrieval
【24h】

Learning Shared Semantic Space with Correlation Alignment for Cross-Modal Event Retrieval

机译:学习共享语义空间,具有相关对齐,用于跨模型事件检索

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose to learn shared semantic space with correlation alignment (S~3CA) for multimodal data representations, which aligns nonlinear correlations of multimodal data distributions in deep neural networks designed for heterogeneous data. In the context of cross-modal (event) retrieval, we design a neural network with convolutional layers and fully connected layers to extract features for images, including images on Flickr-like social media. Simultaneously, we exploit a fully connected neural network to extract semantic features for text documents, including news articles from news media In particular, nonlinear correlations of layer activations in the two neural networks are aligned with correlation alignment during the joint training of the networks. Furthermore, we project the multimodal data into a shared semantic space for cross-modal (event) retrieval, where the distances between heterogeneous data samples can be measured directly. In addition, we contribute a Wiki-Flickr Event dataset, where the multimodal data samples are not describing each other in pairs like the existing paired datasets, but all of them are describing semantic events. Extensive experiments conducted on both paired and unpaired datasets manifest the effectiveness of S~3CA, outperforming the state-of-the-art methods.
机译:在本文中,我们建议学习具有相关对准(S〜3CA)的共享语义空间,用于多模式数据表示,这对准设计用于异构数据的深神经网络中的多模式数据分布的非线性相关性。在跨模型(事件)检索的背景下,我们设计具有卷积层和完全连接的层的神经网络,以提取图像的特征,包括在Flickr的社交媒体上的图像。同时,我们利用完全连接的神经网络来提取文本文档的语义特征,包括来自新闻媒体的新闻文章,特别是两个神经网络中的层激活的非线性相关性与网络的联合训练期间的相关对准对准。此外,我们将多峰数据投影为跨模型(事件)检索的共享语义空间,其中可以直接测量异构数据样本之间的距离。此外,我们还贡献了一个Wiki-Flickr事件数据集,其中多模式数据样本不像现有的配对数据集那样地描述,但所有这些都是描述语义事件。对两者和未配对的数据集进行的广泛实验表现出S〜3CA的有效性,优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号