首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Kernel Attention Network for Single Image Super-Resolution
【24h】

Kernel Attention Network for Single Image Super-Resolution

机译:用于单图像超分辨率的内核注意网络

获取原文
获取原文并翻译 | 示例

摘要

Recently, attention mechanisms have shown a developing tendency toward convolutional neural network (CNN), and some representative attention mechanisms, i.e., channel attention (CA) and spatial attention (SA) have been fully applied to single image super-resolution (SISR) tasks. However, the existing architectures directly apply these attention mechanisms to SISR without much consideration of the nature characteristic, resulting in less strong representational power. In this article, we propose a novel kernel attention module (KAM) for SISR, which enables the network to adjust its receptive field size corresponding to various scales of input by dynamically selecting the appropriate kernel. Based on this, we stack multiple kernel attention modules with group and residual connection to constitute a novel architecture for SISR, which enables our network to learn more distinguishing representations through filtering the information under different receptive fields. Thus, our network is more sensitive to multi-scale features, which enables our single network to deal with multi-scale SR task by predefining the upscaling modules. Besides, other attention mechanisms in super-resolution are also investigated and illustrated in detail in this article. Thanks to the kernel attention mechanism, the extensive benchmark evaluation shows that our method outperforms the other state-of-theart methods.
机译:最近,注意机制已经显示了卷积神经网络(CNN)的发展趋势,以及一些代表性的关注机制,即信道注意力(CA)和空间注意(SA)已完全应用于单图像超分辨率(SISR)任务。然而,现有架构直接对SISR直接应用于SISR,而无需考虑性质特征,导致了不太强大的代表性。在本文中,我们提出了一种用于SISR的新型内核注意力模块(KAM),这使得网络能够通过动态选择相应的内核来调节与各种输入的各种尺度相对应的接收字段大小。基于此,我们将多个内核注意模块堆叠了组和残差连接,构成了SISR的新颖架构,这使我们的网络能够通过过滤不同接收领域的信息来了解更多的区别。因此,我们的网络对多尺度特征更敏感,这使得我们的单个网络能够通过预定精制模块来处理多尺度SR任务。此外,还在本文中详细研究了超分辨率的其他注意机制。由于内核注意力机制,广泛的基准评估表明,我们的方法优于其他最终的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号