首页> 外文期刊>ACM transactions on multimedia computing communications and applications >3D Facial Similarity Measurement and Its Application in Facial Organization
【24h】

3D Facial Similarity Measurement and Its Application in Facial Organization

机译:3D面部相似度测量及其在面部组织中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel framework for 3D facial similarity measurement and its application in facial organization. The construction of the framework is based on Kendall shape space theory. Kendall shape space is a quotient space that is constructed by shape features. In Kendall shape space, the shape features can be measured and is robust to similarity transformations. In our framework, a 3D face is represented by the facial feature landmarks model (FFLM), which can be regarded as the facial shape features. We utilize the geodesic in Kendall shape space to represent the FFLM similarity measurement, which can be regarded as the 3D facial similarity measurement. The FFLM similarity measurement is robust to facial expressions, head poses, and partial facial data. In our experiments, we compute the distance between different FFLMs in two public facial databases: FRGC2.0 and BosphorusDB. On average, we achieve a rank-one facial recognition rate of 98%. Based on the similarity results, we propose a method to construct the facial organization. The facial organization is a hierarchical structure that is achieved from the facial clustering by FFLM similarity measurement. Based on the facial organization, the performance of face searching in a large facial database can be improved obviously (about 400% improvement in experiments).
机译:我们为3D面部相似度测量提出了一种新颖的框架及其在面部组织中的应用。框架的构建是基于Kendall形状的空间理论。 Kendall Shape Space是一种由形状特征构成的商量。在KENDALL形状空间中,可以测量形状特征,并且对相似性变换具有稳健性。在我们的框架中,3D面由面部特征地标模型(FFLM)表示,可以被视为面部形状特征。我们利用KENDALL形状空间中的测地仪来表示FFLM相似度测量,可以被视为3D面部相似度测量。 FFLM相似度测量对面部表情,头部姿势和部分面部数据具有鲁棒性。在我们的实验中,我们在两个公共面部数据库中计算不同FFLM之间的距离:FRGC2.0和BosphorusSDB。平均而言,我们达到了98%的级别识别率。基于相似性结果,我们提出了一种构建面部组织的方法。面部组织是由FFLM相似度测量的面部聚类实现的层次结构。基于面部组织,在大型面部数据库中的脸部搜索的性能明显提高(实验中的约400%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号