首页> 外文期刊>ACM transactions on multimedia computing communications and applications >From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval
【24h】

From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval

机译:从选择性的深度卷积特征到紧凑的二进制表示,用于图像检索

获取原文
获取原文并翻译 | 示例

摘要

In the large-scale image retrieval task, the two most important requirements are the discriminability of image representations and the efficiency in computation and storage of representations. Regarding the former requirement, Convolutional Neural Network is proven to be a very powerful tool to extract highly discriminative local descriptors for effective image search. Additionally, to further improve the discriminative power of the descriptors, recent works adopt fine-tuned strategies. In this article, taking a different approach, we propose a novel, computationally efficient, and competitive framework. Specifically, we first propose various strategies to compute masks, namely, SIFT-masks, SUM-mask, and MAX-mask, to select a representative subset of local convolutional features and eliminate redundant features. Our in-depth analyses demonstrate that proposed masking schemes are effective to address the burstiness drawback and improve retrieval accuracy. Second, we propose to employ recent embedding and aggregating methods that can significantly boost the feature discriminability. Regarding the computation and storage efficiency, we include a hashing module to produce very compact binary image representations. Extensive experiments on six image retrieval benchmarks demonstrate that our proposed framework achieves the state-of-the-art retrieval performances.
机译:在大规模的图像检索任务中,两个最重要的要求是图像表示的可怜和计算和存储效率。关于前一种要求,被证明是一个非常强大的工具,以提取高度辨别的本地描述符以获得有效的图像搜索。此外,为了进一步提高描述符的歧视力,最近的作品采用了微调策略。在本文中,采取不同的方法,我们提出了一种新颖,计算效率和竞争力的框架。具体而言,我们首先提出各种策略来计算掩模,即筛选掩模,SUM-MALK和MAX-MAX,选择局部卷积功能的代表性子集,并消除冗余功能。我们深入的分析表明,提出的掩蔽方案有效地解决了突发性缺陷并提高了检索精度。其次,我们建议采用最近的嵌入和聚合方法,可以显着提高特征辨别性。关于计算和存储效率,我们包括散列模块以产生非常紧凑的二进制图像表示。关于六个图像检索基准测试的广泛实验表明,我们的拟议框架实现了最先进的检索性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号