首页> 外文期刊>ACM transactions on multimedia computing communications and applications >From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval
【24h】

From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval

机译:从选择性深度卷积特征到用于图像检索的紧凑型二进制表示

获取原文
获取原文并翻译 | 示例

摘要

In the large-scale image retrieval task, the two most important requirements are the discriminability of image representations and the efficiency in computation and storage of representations. Regarding the former requirement, Convolutional Neural Network is proven to be a very powerful tool to extract highly discriminative local descriptors for effective image search. Additionally, to further improve the discriminative power of the descriptors, recent works adopt fine-tuned strategies. In this article, taking a different approach, we propose a novel, computationally efficient, and competitive framework. Specifically, we first propose various strategies to compute masks, namely, SIFT-masks, SUM-mask, and MAX-mask, to select a representative subset of local convolutional features and eliminate redundant features. Our in-depth analyses demonstrate that proposed masking schemes are effective to address the burstiness drawback and improve retrieval accuracy. Second, we propose to employ recent embedding and aggregating methods that can significantly boost the feature discriminability. Regarding the computation and storage efficiency, we include a hashing module to produce very compact binary image representations. Extensive experiments on six image retrieval benchmarks demonstrate that our proposed framework achieves the state-of-the-art retrieval performances.
机译:在大规模图像检索任务中,两个最重要的要求是图像表示的可分辨性以及表示的计算和存储效率。关于前一个需求,卷积神经网络被证明是提取非常有区别的局部描述符以进行有效图像搜索的非常强大的工具。此外,为了进一步提高描述符的区分能力,最近的工作采用了微调策略。在本文中,我们采用不同的方法,提出了一种新颖,计算效率高且具有竞争力的框架。具体来说,我们首先提出各种策略来计算掩码,即SIFT掩码,SUM掩码和MAX掩码,以选择局部卷积特征的代表性子集并消除冗余特征。我们的深入分析表明,提出的屏蔽方案可有效解决突发性缺陷并提高检索精度。第二,我们建议采用最新的嵌入和聚合方法,这些方法可以显着提高特征的可识别性。关于计算和存储效率,我们包括一个哈希模块,用于生成非常紧凑的二进制图像表示形式。在六个图像检索基准上进行的大量实验表明,我们提出的框架可实现最新的检索性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号