首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Beat Space Segmentation and Octave Scale Cepstral Feature for Sung Language Recognition in Pop Music
【24h】

Beat Space Segmentation and Octave Scale Cepstral Feature for Sung Language Recognition in Pop Music

机译:节拍空间分割和八度音阶倒谱特性,用于流行音乐中的唱歌语言识别

获取原文
获取原文并翻译 | 示例

摘要

Sung language recognition relies on both effective feature extraction and acoustic modeling. In this paper, we study rhythm based music segmentation with the frame size being the duration of the smallest note in the music, as opposed to fixed length segmentation in spoken language recognition. It is found that acoustic features extracted from the rhythm based segmentation scheme outperform those from fixed length segmentation. We also study the effectiveness of a musically motivated acoustic feature. Octave scale cepstral coefficients (OSCCs) by comparing with the other acoustic features: Log frequency cepstral coefficients, Linear prediction coefficients (LPC) and LPC-derived cepstral coefficients. Finally, we examine the modeling capabilities of Gaussian mixture models and support vector machines in sung language recognition experiments. Experiments conducted on a corpus of 400 popular songs sung in English, Chinese, German, and Indonesian, showed that the OSCC feature outperforms other features. A sung language recognition accuracy of 64.9% was achieved when Gaussian mixture models were trained on shifted-delta-OSCC acoustic features, extracted via rhythm based music segmentation.
机译:唱歌语言识别依赖于有效的特征提取和声学建模。在本文中,我们研究基于节奏的音乐分割,其帧大小是音乐中最小音符的持续时间,与口语识别中的固定长度分割相反。发现从基于节奏的分割方案中提取的声学特征优于那些从固定长度的分割中提取的声学特征。我们还研究了具有音乐动机的声学功能的有效性。通过与其他声学特征进行比较来确定倍频程倒频谱系数(OSCC):对数频率倒频谱系数,线性预测系数(LPC)和LPC衍生的倒频谱系数。最后,我们在歌唱语言识别实验中检查了高斯混合模型和支持向量机的建模能力。对以英语,中文,德语和印尼语演唱的400首流行歌曲的语料库进行的实验表明,OSCC功能优于其他功能。通过基于基于节奏的音乐分割提取的高斯混合模型对偏移δOSCC声学特征进行训练时,其演唱语言识别准确度达到64.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号