首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Object-Based Image Retrieval with Kernel on Adjacency Matrix and Local Combined Features H
【24h】

Object-Based Image Retrieval with Kernel on Adjacency Matrix and Local Combined Features H

机译:基于邻接矩阵和局部组合特征核的基于对象的图像检索H

获取原文
获取原文并翻译 | 示例

摘要

In object-based image retrieval, there are two important issues: an effective image representation method for representing image content and an effective image classification method for processing user feedback to find more images containing the user-desired object categories. In the image representation method, the local-based representation is the best selection for object-based image retrieval. As a kernel-based classification method, Support Vector Machine (SVM) has shown impressive performance on image classification. But SVM cannot work on the local-based representation unless there is an appropriate kernel. To address this problem, some representative kernels are proposed in literatures. However, these kernels cannot work effectively in object-based image retrieval due to ignoring the spatial context and the combination of local features. In this article, we present Adjacent Matrix (AM) and the Local Combined Features (LCF) to incorporate the spatial context and the combination of local features into the kernel. We propose the AM-LCF feature vector to represent image content and the AM-LCF kernel to measure the similarities between AM-LCF feature vectors. According to the detailed analysis, we show that the proposed kernel can overcome the deficiencies of existing kernels. Moreover, we evaluate the proposed kernel through experiments of object-based image retrieval on two public image sets. The experimental results show that the performance of object-based image retrieval can be improved by the proposed kernel.
机译:在基于对象的图像检索中,存在两个重要的问题:用于表示图像内容的有效图像表示方法和用于处理用户反馈以查找更多包含用户所需对象类别的图像的有效图像分类方法。在图像表示方法中,基于局部的表示是基于对象的图像检索的最佳选择。作为基于内核的分类方法,支持向量机(SVM)在图像分类方面表现出令人印象深刻的性能。但是,除非有适当的内核,否则SVM无法在基于本地的表示形式上工作。为了解决这个问题,在文献中提出了一些代表性的内核。但是,由于忽略了空间上下文和局部特征的组合,这些内核无法在基于对象的图像检索中有效工作。在本文中,我们介绍了相邻矩阵(AM)和局部组合特征(LCF),以将空间上下文和局部特征的组合合并到内核中。我们提出了AM-LCF特征向量来表示图像内容,并提出了AM-LCF内核来测量AM-LCF特征向量之间的相似性。通过详细的分析,我们表明所提出的内核可以克服现有内核的不足。此外,我们通过在两个公共图像集上进行基于对象的图像检索实验来评估提出的内核。实验结果表明,提出的内核可以提高基于对象的图像检索性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号