首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Near-Lossless Semantic Video Summarization and Its Applications to Video Analysis
【24h】

Near-Lossless Semantic Video Summarization and Its Applications to Video Analysis

机译:准无损语义视频摘要及其在视频分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The ever increasing volume of video content on the Web has created profound challenges for developing efficient indexing and search techniques to manage video data. Conventional techniques such as video compression and summarization strive for the two commonly conflicting goals of low storage and high visual and semantic fidelity. With the goal of balancing both video compression and summarization, this article presents a novel approach, called Near-Lossless Semantic Summarization (NLSS), to summarize a video stream with the least high-level semantic information loss by using an extremely small piece of metadata. The summary consists of compressed image and audio streams, as well as the metadata for temporal structure and motion information. Although at a very low compression rate (around 1/40 of H.264 baseline, where traditional compression techniques can hardly preserve an acceptable visual fidelity), the proposed NLSS still can be applied to many video-oriented tasks, such as visualization, indexing and browsing, duplicate detection, concept detection, and so on. We evaluate the NLSS on TRECVTD and other video collections, and demonstrate that it is a powerful tool for significantly reducing storage consumption, while keeping high-level semantic fidelity.
机译:Web上视频内容的数量不断增加,为开发有效的索引和搜索技术来管理视频数据提出了严峻的挑战。诸如视频压缩和摘要之类的常规技术力争实现低存储量和高视觉和语义保真度这两个通常相互冲突的目标。为了平衡视频压缩和摘要,本文提出了一种新颖的方法,称为近无损失语义摘要(NLSS),它通过使用极小的元数据来汇总具有最少高级语义信息损失的视频流。 。摘要包括压缩的图像和音频流,以及用于时间结构和运动信息的元数据。尽管压缩率非常低(大约是H.264基准的1/40,传统压缩技术几乎无法保持可接受的视觉保真度),但是建议的NLSS仍然可以应用于许多面向视频的任务,例如可视化,索引编制以及浏览,重复检测,概念检测等。我们在TRECVTD和其他视频集合上评估了NLSS,并证明了它是一种强大的工具,可在保持高级语义保真度的同时,显着减少存储消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号