【24h】

Image Retrieval with Query-Adaptive Hashing

机译:带有查询自适应哈希的图像检索

获取原文
获取原文并翻译 | 示例

摘要

Hashing-based approximate nearest-neighbor search may well realize scalable content-based image retrieval. The existing semantic-preserving hashing methods leverage the labeled data to learn a fixed set of semantic-aware hash functions. However, a fixed hash function set is unable to well encode all semantic information simultaneously, and ignores the specific user's search intention conveyed by the query. In this article, we propose a query-adaptive hashing method which is able to generate the most appropriate binary codes for different queries. Specifically, a set of semantic-biased discriminant projection matrices are first learnt for each of the semantic concepts, through which a semantic-adaptable hash function set is learnt via a joint sparsity variable selection model. At query time, we further use the sparsity representation procedure to select the most appropriate hash function subset that is informative to the semantic information conveyed by the query. Extensive experiments over three benchmark image datasets well demonstrate the superiority of our proposed query-adaptive hashing method over the state-of-the-art ones in terms of retrieval accuracy.
机译:基于散列的近似最近邻搜索可以很好地实现基于内容的可伸缩图像检索。现有的保留语义的哈希方法利用标记的数据来学习一组固定的语义感知哈希函数。但是,固定的哈希函数集不能同时很好地编码所有语义信息,并且会忽略查询传达的特定用户的搜索意图。在本文中,我们提出了一种查询自适应哈希方法,该方法能够为不同查询生成最合适的二进制代码。具体而言,首先为每个语义概念学习一组语义偏置的判别投影矩阵,通过该矩阵,通过联合稀疏变量选择模型来学习语义自适应哈希函数集。在查询时,我们进一步使用稀疏表示过程来选择最适当的哈希函数子集,该子集对查询所传达的语义信息具有指导意义。在三个基准图像数据集上进行的大量实验很好地证明了我们提出的查询自适应哈希方法在检索精度方面优于最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号