首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Progressive Motion Vector Clustering for Motion Estimation and Auxiliary Tracking
【24h】

Progressive Motion Vector Clustering for Motion Estimation and Auxiliary Tracking

机译:渐进运动矢量聚类,用于运动估计和辅助跟踪

获取原文
获取原文并翻译 | 示例

摘要

The motion vector similarity between neighboring blocks is widely used in motion estimation algorithms. However, for nonneighboring blocks, they may also have similar motions due to close depths or belonging to the same object inside the scene. Therefore, the motion vectors usually have several kinds of patterns, which reveal a clustering structure. In this article, we propose a progressive clustering algorithm, which periodically counts the motion vectors of the past blocks to make incremental clustering statistics. These statistics are used as the motion vector predictors for the following blocks. It is proved to be much more efficient for one block to find the best-matching candidate with the predictors. We also design the clustering based search with CUDA for GPU acceleration. Another interesting application of the clustering statistics is persistent static object tracking. Based on the statistics, several auxiliary tracking areas are created to guide the object tracking. Even when the target object has significant changes in appearance or it disappears occasionally, its position still can be predicted. The experiments on Xiph.org Video Test Media dataset illustrate that our clustering based search algorithm outperforms the mainstream and some state-of-the-art motion estimation algorithms. It is 33 times faster on average than the full search algorithm with only slightly higher mean-square error values in the experiments. The tracking results show that the auxiliary tracking areas help to locate the target object effectively.
机译:相邻块之间的运动矢量相似度在运动估计算法中被广泛使用。但是,对于不相邻的块,由于接近的深度或属于场景内的同一对象,它们也可能具有相似的运动。因此,运动矢量通常具有几种模式,这些模式揭示了聚类结构。在本文中,我们提出了一种渐进式聚类算法,该算法定期对过去块的运动矢量进行计数,以进行增量式聚类统计。这些统计数据用作以下块的运动矢量预测变量。事实证明,对于一个区块而言,找到与预测变量最匹配的候选者更为有效。我们还使用CUDA设计了基于聚类的搜索以加速GPU。聚类统计的另一个有趣的应用是持久静态对象跟踪。基于统计信息,创建了几个辅助跟踪区域以指导对象跟踪。即使当目标对象的外观发生重大变化或偶尔消失时,仍可以预测其位置。 Xiph.org视频测试媒体数据集上的实验表明,我们基于聚类的搜索算法优于主流和一些最新的运动估计算法。它平均比完全搜索算法快33倍,而实验中的均方误差值仅稍高。跟踪结果表明,辅助跟踪区域有助于有效地定位目标物体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号