首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Learning a Multi-Concept Video Retrieval Model with Multiple Latent Variables
【24h】

Learning a Multi-Concept Video Retrieval Model with Multiple Latent Variables

机译:学习具有多个潜在变量的多概念视频检索模型

获取原文
获取原文并翻译 | 示例

摘要

Effective and efficient video retrieval has become a pressing need in the "big video" era. The objective of this work is to provide a principled model for computing the ranking scores of a video in response to one or more concepts, where the concepts could be directly supplied by users or inferred by the system from the user queries. Indeed, how to deal with multi-concept queries has become a central component in modern video retrieval systems that accept text queries. However, it has been long overlooked and simply implemented by weighted averaging of the corresponding concept detectors' scores. Our approach, which can be considered as a latent ranking SVM, integrates the advantages of various recent works in text and image retrieval, such as choosing ranking over structured prediction, modeling inter-dependencies between querying concepts, and so on. Videos consist of shots, and we use latent variables to account for the mutually complementary cues within and across shots. Concept labels of shots are scarce and noisy. We introduce a simple and effective technique to make our model robust to outliers. Our approach gives superior performance when it is tested on not only the queries seen at training but also novel queries, some of which consist of more concepts than the queries used for training.
机译:有效和高效的视频检索已成为“大视频”时代的迫切需求。这项工作的目的是提供一种原理模型,用于响应一个或多个概念来计算视频的排名分数,其中这些概念可以由用户直接提供,也可以由系统从用户查询中推断出来。实际上,如何处理多概念查询已成为接受文本查询的现代视频检索系统的核心组成部分。然而,长期以来它一直被忽略,并通过相应概念检测器得分的加权平均来简单地实现。我们的方法可以看作是潜在的排序SVM,它融合了文本和图像检索中各种最新著作的优势,例如选择结构化预测上的排名,对查询概念之间的相互依存进行建模等。视频由镜头组成,我们使用潜在变量来说明镜头内部和镜头之间相互补充的提示。镜头的概念标签稀少且嘈杂。我们引入一种简单有效的技术来使我们的模型对异常值具有鲁棒性。当我们不仅对训练中看到的查询进行测试,而且对新颖的查询进行测试时,我们的方法也能提供卓越的性能,其中一些新颖的查询比用于训练的查询包含更多的概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号