首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Paying More Attention to Saliency: Image Captioning with Saliency and Context Attention
【24h】

Paying More Attention to Saliency: Image Captioning with Saliency and Context Attention

机译:更加注意显着性:具有显着性和上下文注意的图像字幕

获取原文
获取原文并翻译 | 示例

摘要

Image captioning has been recently gaining a lot of attention thanks to the impressive achievements shown by deep captioning architectures, which combine Convolutional Neural Networks to extract image representations and Recurrent Neural Networks to generate the corresponding captions. At the same time, a significant research effort has been dedicated to the development of saliency prediction models, which can predict human eye fixations. Even though saliency information could be useful to condition an image captioning architecture, by providing an indication of what is salient and what is not, research is still struggling to incorporate these two techniques. In this work, we propose an image captioning approach in which a generative recurrent neural network can focus on different parts of the input image during the generation of the caption, by exploiting the conditioning given by a saliency prediction model on which parts of the image are salient and which are contextual. We show, through extensive quantitative and qualitative experiments on large-scale datasets, that our model achieves superior performance with respect to captioning baselines with and without saliency and to different state-of-the-art approaches combining saliency and captioning.
机译:近年来,由于深字幕架构所取得的令人瞩目的成就,图像字幕已引起了广泛的关注,深层字幕架构结合了卷积神经网络以提取图像表示,并结合了递归神经网络来生成相应的字幕。同时,针对显着性预测模型的开发已经进行了大量研究工作,该模型可以预测人眼注视。尽管显着性信息对于调整图像字幕体系结构可能有用,但是通过提供什么是显着的,什么不是显着的指示,研究仍在努力地将这两种技术结合在一起。在这项工作中,我们提出了一种图像字幕方法,其中,通过利用显着性预测模型提供的条件(在图像的某些部分位于其中),生成的递归神经网络可以在字幕生成期间专注于输入图像的不同部分。突出,并且是上下文相关的。通过在大规模数据集上进行大量的定量和定性实验,我们表明,在具有和不具有显着性的字幕基线以及结合显着性和字幕的不同最新方法方面,我们的模型均具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号