首页> 外文期刊>Neurocomputing >Exploring multi-scale deformable context and channel-wise attention for salient object detection
【24h】

Exploring multi-scale deformable context and channel-wise attention for salient object detection

机译:探索多尺度可变形的上下文和渠道 - 明智的注意力,突出对象检测

获取原文
获取原文并翻译 | 示例

摘要

Contextual information has played an important role in salient object detection. However, due to the fixed geometric structures of convolution kernels employed by existing Convolutional Neural Networks (CNNs) based methods, it is difficult to extract meaningfully visual contexts for those salient objects with varying sizes and non-rigid shapes. To address this problem, in this paper, we propose a Multi-Scale Deformation Module (MSDM) to capture multi-scale visual cues and varying shapes of salient objects. Moreover, most existing CNNs based methods treat all channels of feature maps equally, which tends to differ from the fact that different channels actually contribute differently to saliency prediction. For that, we involve a novel Channel-Wise Attention Mechanism (CWAM) after MSDM to highlight those informative channels while suppressing those confusing ones. Experimental results on five benchmark datasets demonstrate the superiority of the proposed method over the state-of-the-art approaches. (c) 2020 Elsevier B.V. All rights reserved.
机译:上下文信息在突出对象检测中发挥了重要作用。然而,由于基于现有卷积神经网络(CNNS)的卷积核的固定几何结构(CNNS)的方法,难以提取具有变化尺寸和非刚性形状的那些突出物体的有意义的视觉上下文。为了解决这个问题,在本文中,我们提出了一个多尺度变形模块(MSDM)来捕获多尺度视觉提示和变化的突出对象的形状。此外,基于现有的CNNS的基于CNNS的方法同样对待所有特征映射的所有信道,这往往与不同的信道实际贡献不同于显着性预测的事实不同。为此,在MSDM之后,我们涉及新的渠道 - 明智的注意机制(CWAM),以突出这些信息渠道,同时抑制那些令人困惑的渠道。五个基准数据集上的实验结果证明了在最先进的方法中提出的方法的优越性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|92-103|共12页
  • 作者单位

    Changzhou Univ Changzhou 213164 Jiangsu Peoples R China|Xidian Univ Sch Mechanoelect Engn Ctr Complex Syst Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Mechanoelect Engn Ctr Complex Syst Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Sch Mechanoelect Engn Ctr Complex Syst Xian 710071 Shaanxi Peoples R China;

    Sci & Technol Complex Syst Control & Intelligent Nav Guidance & Control Beijing 100074 Peoples R China;

    Xian Inst Electromech Informat Technol Xian 710065 Shaanxi Peoples R China;

    Sci & Technol Complex Syst Control & Intelligent Beijing 100074 Peoples R China;

    Xidian Univ Sch Mechanoelect Engn Ctr Complex Syst Xian 710071 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Salient object detection; Multi-cale; Deformation; Attention;

    机译:突出物体检测;多绞合;变形;注意力;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号