首页> 外文期刊>ACM Transactions on Modeling and Computer Simulation >Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids
【24h】

Scalable Cloning on Large-Scale GPU Platforms with Application to Time-Stepped Simulations on Grids

机译:大规模GPU平台上的可扩展克隆及其在网格上的时间分步仿真中的应用

获取原文
获取原文并翻译 | 示例

摘要

Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed memory computing platforms, due to the dynamic nature of the computational load across clones, and due to the complex dependencies spanning the clone tree. We present the conceptual simulation framework, algorithmic foundations, and runtime interface of CLONEX, a new system we designed for scalable simulation cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across a large parallel system without full physical duplication of computation and memory. The performance of a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing system has been evaluated with three benchmarks-heat diffusion, forest fire, and disease propagation models-delivering a speed up of over two orders of magnitude compared to replicated runs. The results demonstrate a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via cloning using the CLONEX interface.
机译:克隆是一种有效地模拟在基础模拟过程中未阐明的多种假设情景的树的技术。但是,由于跨克隆的计算负载的动态特性以及跨克隆树的复杂依赖关系,在大型的分布式内存计算平台上实现克隆执行非常具有挑战性。我们介绍了CLONEX的概念仿真框架,算法基础和运行时接口,CLONEX是我们设计用于可扩展仿真克隆的新系统。它可以在大型并行系统上高效,动态地创建仿真动态树的整个逻辑副本,而无需对计算和内存进行完全物理复制。在三个计算基准上评估了在超级计算系统的多达1,024个图形处理单元上执行的原型实现的性能-热扩散,森林火灾和疾病传播模型-与重复运行相比,速度提高了两个数量级以上。结果表明,通过使用CLONEX接口进行克隆,可以以更快,更可扩展的方式执行大型模拟的多种假设场景组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号