首页> 外文期刊>ACM transactions on mathematical software >Tree Partitioning Reduction: A New Parallel Partition Method for Solving Tridiagonal Systems
【24h】

Tree Partitioning Reduction: A New Parallel Partition Method for Solving Tridiagonal Systems

机译:减少树分割:求解三对角线系统的新并行分割方法

获取原文
获取原文并翻译 | 示例

摘要

Solving tridiagonal linear-equation systems is a fundamental computing kernel in a wide range of scientific and engineering applications, and its computation can be modeled with parallel algorithms. These parallel solvers are typically designed to compute problems whose data lit in a common shared-memory space where all the cores taking part in the computation have access. However, when the problem size is large, data cannot be entirely stored in the common shared-memory space, and a high number of high-latency communications are performed. One alternative is to partition the problem among different memory spaces. At this point, conventional parallel algorithms do not facilitate the partition of computation in independent tiles, since each reduction depends on equations that may be in different tiles. This article proposes an algorithm based on a tree reduction, called the Tree Partitioning Reduction (TPR) method, which partitions the problem into independent slices that can be partially computed in parallel within different common shared-memory spaces. The TPR method can be implemented for any parallel and distributed programming paradigm. Furthermore, in this work, TPR is efficiently implemented for CUDA GPUs to solve large size problems, providing highly competitive performance results with respect to existing packages, being, on average, 22.03x faster than CUSPARSE.
机译:求解三对角线性方程组是广泛的科学和工程应用中的基本计算内核,并且其计算可以使用并行算法建模。这些并行求解器通常用于计算问题,这些问题的数据在公共共享内存空间中发光,参与计算的所有内核都可以访问该共享内存空间。然而,当问题大时,数据不能完全存储在公共共享存储空间中,并且执行大量的高延迟通信。一种选择是在不同的存储空间之间分配问题。在这一点上,传统的并行算法不利于将计算划分为独立的图块,因为每次减少都取决于可能在不同图块中的方程式。本文提出了一种基于树约简的算法,称为树划分约简(TPR)方法,该算法将问题划分为多个独立的片,这些片可以在不同的公用共享内存空间中部分地并行计算。 TPR方法可用于任何并行和分布式编程范例。此外,在这项工作中,为CUDA GPU有效地实施了TPR,以解决大尺寸问题,相对于现有封装提供了极具竞争力的性能结果,平均速度比CUSPARSE高22.03倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号