首页> 外文期刊>ACM transactions on mathematical software >Implementing Multifrontal Sparse Solvers for Multicore Architectures with Sequential Task Flow Runtime Systems
【24h】

Implementing Multifrontal Sparse Solvers for Multicore Architectures with Sequential Task Flow Runtime Systems

机译:使用顺序任务流运行时系统为多核体系结构实现多前沿稀疏求解器

获取原文
获取原文并翻译 | 示例

摘要

To face the advent of multicore processors and the ever increasing complexity of hardware architectures, programming models based on DAG parallelism regained popularity in the high performance, scientific computing community. Modern runtime systems offer a programming interface that complies with this paradigm and powerful engines for scheduling the tasks into which the application is decomposed. These tools have already proved their effectiveness on a number of dense linear algebra applications. This article evaluates the usability and effectiveness of runtime systems based on the Sequential Task Flow model for complex applications, namely, sparse matrix multifrontal factorizations that feature extremely irregular workloads, with tasks of different granularities and characteristics and with a variable memory consumption. Most importantly, it shows how this parallel programming model eases the development of complex features that benefit the performance of sparse, direct solvers as well as their memory consumption. We illustrate our discussion with the multifrontal QR factorization running on top of the StarPU runtime system.
机译:面对多核处理器的出现和硬件架构的日益复杂性,基于DAG并行性的编程模型在高性能,科学计算社区中重新流行。现代的运行时系统提供了符合此范例的编程接口和强大的引擎,可用于调度将应用程序分解为的任务。这些工具已经证明了其在许多稠密线性代数应用中的有效性。本文基于顺序任务流模型针对复杂应用程序评估了运行时系统的可用性和有效性,该模型即稀疏矩阵多边分解,具有极为不规则的工作负载,具有不同粒度和特征的任务以及可变的内存消耗。最重要的是,它显示了这种并行编程模型如何简化复杂功能的开发,这些功能将有利于稀疏,直接求解器的性能及其内存消耗。我们通过在StarPU运行时系统之上运行的多正面QR分解来说明我们的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号