首页> 外文期刊>ACM transactions on mathematical software >Automating the Implementation of Kalman Filter Algorithms
【24h】

Automating the Implementation of Kalman Filter Algorithms

机译:卡尔曼滤波算法的自动化实现

获取原文
获取原文并翻译 | 示例

摘要

Autofilter is a tool that generates implementations that solve state estimation problems using Kalman filters. From a high-level, mathematics-based description of a state estimation problem, AUTOFILTER automatically generates code that computes a statistically optimal estimate using one or more of a number of well-known variants of the Kalman filter algorithm. The problem description may be given in terms of continuous or discrete, linear or nonlinear process and measurement dynamics. From this description, AUTOFILTER automates many common solution methods (e.g., linearization, discretization) and generates C or Matlab code fully automatically. AUTOFILTER surpasses toolkit-based programming approaches for Kalman filters because it requires no low-level programming skills (e.g., to "glue" together library function calls). AUTOFILTER raises the level of discourse to the mathematics of the problem at hand rather than the details of what algorithms, data structures, optimizations and so on are required to implement it. An overview of AUTOFILTER is given along with an example of its practical application to deep space attitude estimation.
机译:自动过滤器是一种工具,可生成使用卡尔曼滤波器解决状态估计问题的实现。根据状态估计问题的基于数学的高级描述,AUTOFILTER自动生成代码,该代码使用许多已知的卡尔曼滤波器算法变体中的一个或多个来计算统计上最优的估计。可以根据连续或离散,线性或非线性过程和测量动态来给出问题描述。根据此描述,AUTOFILTER可自动执行许多常见的求解方法(例如线性化,离散化)并完全自动生成C或Matlab代码。因为AUTOFILTER不需要低级的编程技巧(例如,将库函数调用“粘合”在一起),所以它超越了基于工具包的Kalman滤波器编程方法。 AUTOFILTER提高了对当前问题数学的论述水平,而不是实现该问题所需的算法,数据结构,优化等细节。概述了自动滤波器,并给出了其在深空姿态估计中的实际应用示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号