首页> 外文期刊>ACM transactions on mathematical software >Algorithm 900: A Discrete Time Kalman Filter Package for Large Scale Problems
【24h】

Algorithm 900: A Discrete Time Kalman Filter Package for Large Scale Problems

机译:算法900:用于大规模问题的离散时间卡尔曼滤波器程序包

获取原文
获取原文并翻译 | 示例

摘要

Data assimilation is the process of feeding a partially unknown prediction model with available information from observations, with the objective of correcting and improving the modeled results. One of the most important mathematical tools to perform data assimilation is the Kalman filter. This is essentially a predictor-corrector algorithm that is optimal in the sense of minimizing the trace of the covariance matrix of the errors. Unfortunately, the computational cost of applying the filter to large scale problems is enormous, and the programming of the filter is highly dependent on the model and the format of the data involved. The first objective of this article is to present a set of Fortran 90 modules that implement the reduced rank square root versions of the Kalman filter, adapted for the assimilation of a very large number of variables. The second objective is to present a Kalman filter implementation whose code is independent of both the model and observations and is easy to use. A detailed description of the algorithms, structure, parallelization is given along with examples of using the package to solve practical problems.
机译:数据同化是向部分未知的预测模型提供来自观测的可用信息的过程,目的是校正和改善建模结果。进行数据同化的最重要的数学工具之一是卡尔曼滤波器。从本质上讲,这是一种预测器-校正器算法,在将错误的协方差矩阵的迹线最小化的意义上是最佳的。不幸的是,将滤波器应用于大规模问题的计算成本巨大,并且滤波器的编程高度依赖于所涉及数据的模型和格式。本文的第一个目标是介绍一组Fortran 90模块,这些模块实现了Kalman滤波器的降低秩平方根的版本,适用于同化大量变量。第二个目标是提出一个卡尔曼滤波器的实现,其代码与模型和观测值均独立,并且易于使用。给出了有关算法,结构,并行化的详细说明,以及使用该软件包解决实际问题的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号