首页> 外文期刊>ACM transactions on mathematical software >Algorithm 943: MSS: MATLAB Software for L-BFGS Trust-Region Subproblems for Large-Scale Optimization
【24h】

Algorithm 943: MSS: MATLAB Software for L-BFGS Trust-Region Subproblems for Large-Scale Optimization

机译:算法943:MSS:用于L-BFGS信任区域子问题的MATLAB软件,用于大规模优化

获取原文
获取原文并翻译 | 示例

摘要

A MATLAB implementation of the More-Sorensen sequential (MSS) method is presented. The MSS method computes the minimizer of a quadratic function defined by a limited-memory BFGS matrix subject to a two-norm trust-region constraint. This solver is an adaptation of the More-Sorensen direct method into an L-BFGS setting for large-scale optimization. The MSS method makes use of a recently proposed stable fast direct method for solving large shifted BFGS systems of equations [Erway and Marcia 2012; Erway et al. 2012] and is able to compute solutions to any user-defined accuracy. This MATLAB implementation is a matrix-free iterative method for large-scale optimization. Numerical experiments on the CUTEr [Bongartz et al. 1995; Gould et al. 2003]) suggest that using the MSS method as a trust-region subproblem solver can require significantly fewer function and gradient evaluations needed by a trust-region method as compared with the Steihaug-Toint method.
机译:提出了More-Sorensen顺序(MSS)方法的MATLAB实现。 MSS方法计算受限函数BFGS矩阵在两个范数信任区域约束下定义的二次函数的最小化器。该求解器是More-Sorensen直接方法到L-BFGS设置的改编,用于大规模优化。 MSS方法利用最近提出的稳定快速直接方法来求解方程组的大位移BFGS系统[Erway and Marcia 2012; Erway等。 2012],并能够计算出任何用户定义的精度的解决方案。该MATLAB实现是用于大规模优化的无矩阵迭代方法。 CUTEr上的数值实验[Bongartz等。 1995;古尔德等。 2003])建议,与Steihaug-Toint方法相比,使用MSS方法作为信任区子问题求解器可能需要的信任区方法所需的功能和梯度评估要少得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号