首页> 外文期刊>ACM transactions on mathematical software >A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box Optimization
【24h】

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box Optimization

机译:无约束大规模黑箱优化的竞争分治法

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a competitive divide-and-conquer algorithm for solving large-scale black-box optimization problems for which there are thousands of decision variables and the algebraic models of the problems are unavailable. We focus on problems that are partially additively separable, since this type of problem can be further decomposed into a number of smaller independent subproblems. The proposed algorithm addresses two important issues in solving large-scale black-box optimization: (1) the identification of the independent subproblems without explicitly knowing the formula of the objective function and (2) the optimization of the identified black-box subproblems. First, a Global Differential Grouping (GDG) method is proposed to identify the independent subproblems. Then, a variant of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is adopted to solve the subproblems resulting from its rotation invariance property. GDG and CMA-ES work together under the cooperative co-evolution framework. The resultant algorithm, named CC-GDG-CMAES, is then evaluated on the CEC'2010 large-scale global optimization (LSGO) benchmark functions, which have a thousand decision variables and black-box objective functions. The experimental results show that, on most test functions evaluated in this study, GDG manages to obtain an ideal partition of the index set of the decision variables, and CC-GDG-CMAES outperforms the state-of-the-art results. Moreover, the competitive performance of the well-known CMA-ES is extended from low-dimensional to high-dimensional black-box problems.
机译:本文提出了一种竞争性的分治法,用于解决大规模的黑盒优化问题,该问题具有成千上万的决策变量,而问题的代数模型不可用。我们专注于部分可加分的问题,因为这种类型的问题可以进一步分解为许多较小的独立子问题。所提出的算法解决了解决大规模黑箱优化的两个重要问题:(1)在不明确知道目标函数公式的情况下独立子问题的识别;(2)识别黑箱子问题的优化。首先,提出了一种全局差分分组(GDG)方法来识别独立的子问题。然后,采用协方差矩阵适应进化策略(CMA-ES)的变体来解决由其旋转不变性导致的子问题。 GDG和CMA-ES在合作共进化框架下共同工作。然后,在CEC'2010大规模全局优化(LSGO)基准函数上评估所得的算法CC-GDG-CMAES,该函数具有一千个决策变量和黑匣子目标函数。实验结果表明,在这项研究中评估的大​​多数测试功能上,GDG设法获得了决策变量索引集的理想划分,而CC-GDG-CMAES的表现优于最新结果。此外,众所周知的CMA-ES的竞争性能已从低维问题扩展到高维黑箱问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号