首页> 外文期刊>ACM transactions on mathematical software >Parallel Memory-Efficient Adaptive Mesh Refinement on Structured Triangular Meshes with Billions of Grid Cells
【24h】

Parallel Memory-Efficient Adaptive Mesh Refinement on Structured Triangular Meshes with Billions of Grid Cells

机译:具有数十亿个网格单元的结构化三角形网格上的并行内存有效自适应网格细化

获取原文
获取原文并翻译 | 示例

摘要

We present sam(oa)(2), a software package for a dynamically adaptive, parallel solution of 2D partial differential equations on triangular grids created via newest vertex bisection. An element order imposed by the Sierpinski space-filling curve provides an algorithm for grid generation, refinement, and traversal that is inherently memory efficient. Based purely on stack and stream data structures, it completely avoids random memory access. Using an element-oriented data view suitable for local operators, concrete simulation scenarios are implemented based on control loops and event hooks, which hide the complexity of the underlying traversal scheme. Two case studies are presented: two-phase flow in heterogeneous porous media and tsunami wave propagation, demonstrated on the Tohoku tsunami 2011 in Japan. sam( oa) 2 features hybrid MPI(+)OpenMP parallelization based on the Sierpinski order induced on the elements. Sections defined by contiguous grid cells define atomic tasks for OpenMP work sharing and stealing, as well as for migration of grid cells between MPI processes. Using optimized communication and load balancing algorithms, sam(oa) 2 achieves 88% strong scaling efficiency from 16 to 512 cores and 92% efficiency in a weak scaling test on 8,192 cores with 10 billion elements-all tests including adaptive mesh refinement and load balancing in each time step.
机译:我们介绍了sam(oa)(2),这是一个用于通过最新顶点平分创建的三角网格上2D偏微分方程的动态自适应并行解决方案的软件包。 Sierpinski空间填充曲线所强加的元素顺序为网格生成,细化和遍历提供了一种固有的内存有效算法。纯粹基于堆栈和流数据结构,它完全避免了随机内存访问。使用适合本地操作员的面向元素的数据视图,基于控制循环和事件挂钩实现了具体的模拟方案,这隐藏了底层遍历方案的复杂性。提出了两个案例研究:非均质多孔介质中的两相流和海啸波传播,在日本2011年日本东北海啸中得到了证明。 sam(oa)2具有基于元素上诱导的Sierpinski顺序的混合MPI(+)OpenMP并行化功能。连续的网格单元定义的部分定义了用于OpenMP工作共享和窃取以及MPI流程之间的网格单元迁移的原子任务。使用优化的通信和负载平衡算法,sam(oa)2在16到512个内核上实现了88%的强大扩展效率,在对具有100亿个元素的8,192个内核进行的弱缩放测试中实现了92%的效率-所有测试均包括自适应网格细化和负载平衡在每个时间步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号