首页> 外文期刊>ACM transactions on mathematical software >Algorithm 988: AMGKQ: An Efficient Implementation of Adaptive Multivariate Gauss-Kronrod Quadrature for Simultaneous Integrands in Octave/MATLAB
【24h】

Algorithm 988: AMGKQ: An Efficient Implementation of Adaptive Multivariate Gauss-Kronrod Quadrature for Simultaneous Integrands in Octave/MATLAB

机译:算法988:AMGKQ:在Octave / MATLAB中同时积分的自适应多元Gauss-Kronrod正交算法的有效实现

获取原文
获取原文并翻译 | 示例

摘要

The algorithm AMGKQ for adaptive multivariate Gauss-Kronrod quadrature over hyperrectangular regions of arbitrary dimensionality is proposed and implemented in Octave/MATLAB. It can approximate numerically any number of integrals over a common domain simultaneously. Improper integrals are addressed through singularity weakening coordinate transformations. Internal singularities are addressed through the use of breakpoints. Its accuracy performance is investigated thoroughly, and its running time is compared to other commonly available routines in two and three dimensions. Its running time can be several orders of magnitude faster than recursively called quadrature routines. Its performance is limited only by the memory structure of its operating environment. Included with the software are numerous examples of its invocation.
机译:提出并在Octave / MATLAB中实现了用于在任意维度的超矩形区域上进行自适应多元Gauss-Kronrod求积的算法AMGKQ。它可以在数值上同时在一个公共域上近似任意数量的积分。通过奇异性削弱坐标转换可以解决积分不当的问题。内部奇点通过使用断点来解决。对其准确性性能进行了彻底研究,并将其运行时间与其他常用的二维和三维例程进行了比较。它的运行时间可以比递归调用正交例程快几个数量级。它的性能仅受其操作环境的内存结构限制。该软件随附了许多调用示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号