首页> 外文期刊>ACM Transactions on Management Information Systems >Distributed Privacy-Preserving Decision Support System for Highly Imbalanced Clinical Data
【24h】

Distributed Privacy-Preserving Decision Support System for Highly Imbalanced Clinical Data

机译:高度不平衡临床数据的分布式隐私保护决策支持系统

获取原文
获取原文并翻译 | 示例

摘要

When a medical practitioner encounters a patient with rare symptoms that translates to rare occurrences in the local database, it is quite valuable to draw conclusions collectively from such occurrences in other hospitals. However, for such rare conditions, there will be a huge imbalance in classes among the relevant base population. Due to regulations and privacy concerns, collecting data from other hospitals will be problematic. Consequently, distributed decision support systems that can use just the statistics of data from multiple hospitals are valuable. We present a system that can collectively build a distributed classification model dynamically without the need of patient data from each site in the case of imbalanced data. The system uses a voting ensemble of experts for the decision model. The imbalance condition and number of experts can be determined by the system. Since only statistics of the data and no raw data are required by the system, patient privacy issues are addressed. We demonstrate the outlined principles using the Nationwide Inpatient Sample (NIS) database. Results of experiments conducted on 7,810,762 patients from 1050 hospitals show improvement of 13.68% to 24.46% in balanced prediction accuracy using our model over the baseline model, illustrating the effectiveness of the proposed methodology.
机译:当医生遇到罕见症状的患者后,在本地数据库中转换为罕见事件时,从其他医院的此类事件中共同得出结论是非常有价值的。但是,在这种罕见的情况下,相关基本人群的阶级将出现巨大的不平衡。由于法规和隐私问题,从其他医院收集数据将是有问题的。因此,仅可以使用来自多家医院的数据统计信息的分布式决策支持系统非常有价值。我们提出了一种系统,该系统可以动态地集体构建分布式分类模型,而在数据不平衡的情况下,无需来自每个站点的患者数据。该系统使用专家的投票组作为决策模型。系统的不平衡状况和专家人数可以确定。由于系统仅需要统计数据而无需原始数据,因此可以解决患者隐私问题。我们使用全国住院样本(NIS)数据库演示了概述的原则。对来自1050家医院的7,810,762名患者进行的实验结果表明,使用我们的模型,与基线模型相比,平衡预测准确性提高了13.68%至24.46%,说明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号