首页> 外文期刊>ACM Transactions on Management Information Systems >Understanding Business Ecosystem Dynamics: A Data-Driven Approach
【24h】

Understanding Business Ecosystem Dynamics: A Data-Driven Approach

机译:了解企业生态系统动力学:一种数据驱动的方法

获取原文
获取原文并翻译 | 示例

摘要

Business ecosystems consist of a heterogeneous and continuously evolving set of entities that are interconnected through a complex, global network of relationships. However, there is no well-established methodology to study the dynamics of this network. Traditional approaches have primarily utilized a single source of data of relatively established firms; however, these approaches ignore the vast number of relevant activities that often occur at the individual and entrepreneurial levels. We argue that a data-driven visualization approach, using both institutionally and socially curated datasets, can provide important complementary, triangulated explanatory insights into the dynamics of interorganizational networks in general and business ecosystems in particular. We develop novel visualization layouts to help decision makers systemically identify and compare ecosystems. Using traditionally disconnected data sources on deals and alliance relationships (DARs), executive and funding relationships (EFRs), and public opinion and discourse (POD), we empirically illustrate our data-driven method of data triangulation and visualization techniques through three cases in the mobile industry Google's acquisition of Motorola Mobility, the coopetitive relation between Apple and Samsung, and the strategic partnership between Nokia and Microsoft. The article concludes with implications and future research opportunities.
机译:业务生态系统由一组异构的,不断发展的实体组成,这些实体通过复杂的全球关系网络相互连接。但是,没有成熟的方法来研究此网络的动力学。传统方法主要利用相对成立的公司的单一数据源。但是,这些方法忽略了经常在个人和企业家层面上进行的大量相关活动。我们认为,使用机构和社会策划的数据集的数据驱动的可视化方法可以提供对组织内部网络(尤其是企业生态系统)动态的重要补充,三角剖分的解释见解。我们开发新颖的可视化布局,以帮助决策者系统地识别和比较生态系统。使用交易,联盟关系(DARs),执行和资金关系(EFR)以及舆论和话语(POD)上传统上断开的数据源,我们通过以下三个案例以经验的方式说明了数据三角剖分和可视化技术的数据驱动方法移动行业Google收购了Motorola Mobility,苹果与三星之间的竞争关系以及诺基亚与微软之间的战略伙伴关系。本文的结论与启示以及未来的研究机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号