首页> 外文期刊>ACM Transactions on Management Information Systems >PANDA: Partitioned Data Security on Outsourced Sensitive and Non-sensitive Data
【24h】

PANDA: Partitioned Data Security on Outsourced Sensitive and Non-sensitive Data

机译:熊猫:外包敏感和非敏感数据的分区数据安全性

获取原文
获取原文并翻译 | 示例

摘要

Despite extensive research on cryptography, secure and efficient query processing over outsourced data remains an open challenge. This article continues along with the emerging trend in secure data processing that recognizes that the entire dataset may not be sensitive and, hence, non-sensitivity of data can be exploited to overcome limitations of existing encryption-based approaches. We first provide a new security definition, entitled partitioned data security, for guaranteeing that the joint processing of non-sensitive data (in cleartext) and sensitive data (in encrypted form) does not lead to any leakage. Then, this article proposes a new secure approach, entitled query binning (QB), that allows secure execution of queries over non-sensitive and sensitive parts of the data. QB maps a query to a set of queries over the sensitive and non-sensitive data in a way that no leakage will occur due to the joint processing over sensitive and non-sensitive data. In particular, we propose secure algorithms for selection, range, and join queries to be executed over encrypted sensitive and cleartext non-sensitive datasets. Interestingly, in addition to improving performance, we show that QB actually strengthens the security of the underlying cryptographic technique by preventing size, frequency-count, and workload-skew attacks.
机译:尽管对密码学进行了广泛的研究,但外包数据的安全和高效的查询处理仍然是一个开放的挑战。本文继续与安全数据处理中的新兴趋势一起识别出整个数据集可能不敏感,因此,可以利用数据的非感应性来克服基于加密的方法的限制。我们首先提供新的安全定义,授权分区数据安全性,以保证非敏感数据(清晰度)和敏感数据(以加密形式)的联合处理不会导致任何泄漏。然后,本文提出了一种新的安全方法,授权查询Binning(QB),允许在数据的非敏感部分和敏感部分上安全执行查询。 QB将查询映射到敏感和非敏感数据上的一组查询,以通过对敏感和非敏感数据的联合处理不会发生泄漏。特别是,我们提出了用于选择,范围和加入查询的安全算法,以通过加密的敏感和ClearText非敏感数据集执行。有趣的是,除了提高性能之外,我们还表明QB通过防止尺寸,频率计数和工作负载 - 偏移攻击实际上加强了底层加密技术的安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号