首页> 外文期刊>ACM transactions on knowledge discovery from data >A Layout-Based Classification Method for Visualizing Time-Varying Graphs
【24h】

A Layout-Based Classification Method for Visualizing Time-Varying Graphs

机译:一种基于布局的分类方法,用于可视化时变图

获取原文
获取原文并翻译 | 示例

摘要

Connectivity analysis between the components of large evolving systems can reveal significant patterns of interaction. The systems can be simulated by topological graph structures. However, such analysis becomes challenging on large and complex graphs. Tasks such as comparing, searching, and summarizing structures, are difficult due to the enormous number of calculations required. For time-varying graphs, the temporal dimension even intensifies the difficulty. In this article, we propose to reduce the complexity of analysis by focusing on subgraphs that are induced by closely related entities. To summarize the diverse structures of subgraphs, we build a supervised layout-based classification model. The main premise is that the graph structures can induce a unique appearance of the layout. In contrast to traditional graph theory-based and contemporary neural network-based methods of graph classification, our approach generates low costs and there is no need to learn informative graph representations. Combined with temporally stable visualizations, we can also facilitate the understanding of sub-structures and the tracking of graph evolution. The method is evaluated on two real-world datasets. The results show that our system is highly effective in carrying out visual-based analytics of large graphs.
机译:大型不断发展系统的组件之间的连接性分析可以揭示显着的相互作用模式。可以通过拓扑图结构模拟系统。然而,这种分析对大型和复杂的图形变得挑战。由于所需的数量巨大计算,诸如比较,搜索和总结结构的任务是困难的。对于时变图,时间维度甚至加剧了难度。在本文中,我们建议通过专注于由密切相关的实体引起的子图来降低分析的复杂性。总结子图的不同结构,我们构建了一个受监督的基于布局的分类模型。主要的前提是,图形结构可以诱导布局的独特外观。与传统的基于图形理论和基于当代的基于神经网络的图形分类方法相比,我们的方法产生了低成本,并且无需学习信息图形表示。结合时间稳定的可视化,我们还可以促进对子结构的理解和图形演化的跟踪。该方法是在两个现实世界数据集中进行评估。结果表明,我们的系统在执行大型图形的视觉分析方面非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号