首页> 外文期刊>ACM transactions on knowledge discovery from data >Noise Corrected Sampling of Online Social Networks
【24h】

Noise Corrected Sampling of Online Social Networks

机译:噪声纠正在线社交网络的采样

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a new method to perform topological network sampling. Topological network sampling is a process for extracting a subset of nodes and edges from a network, such that analyses on the sample provide results and conclusions comparable to the ones they would return if run on whole structure. We need network sampling because the largest online network datasets are accessed through low-throughput application programming interface (API) systems, rendering the collection of the whole network infeasible. Our method is inspired by the literature on network backboning, specifically the noise-corrected backbone. We select the next node to explore by following the edge we identify as the one providing the largest information gain, given the topology of the sample explored so far. We evaluate our method against the most commonly used sampling methods. We do so in a realistic framework, considering a wide array of network topologies, network analysis, and features of API systems. There is no method that can provide the best sample in all possible scenarios, thus in our results section, we show the cases in which our method performs best and the cases in which it performs worst. Overall, the noise-corrected network sampling performs well: it has the best rank average among the tested methods across a wide range of applications.
机译:在本文中,我们提出了一种新的方法来执行拓扑网络采样。拓扑网络采样是用于从网络中提取节点和边的子集的过程,使得样本的分析提供与在整个结构上运行时会返回的结果和结论。我们需要网络采样,因为通过低吞吐量应用程序编程接口(API)系统访问了最大的在线网络数据集,渲染整个网络的集合不可行。我们的方法受到网络包销的文献的启发,特别是噪声校正的骨干。考虑到到目前为止所探讨的样本的拓扑,我们选择通过遵循所识别的边缘来探索下一个节点。我们评估我们对最常用的采样方法的方法。考虑到API系统的广泛网络拓扑,网络分析和功能,我们在现实框架中进行。没有任何方法可以在所有可能的场景中提供最佳样本,从而在我们的结果部分中,我们展示了我们的方法执行最佳的情况以及其表现最差的情况。总的来说,噪声校正的网络采样表现良好:它具有跨各种应用程序的测试方法中最佳排名平均值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号