首页> 外文期刊>ACM transactions on knowledge discovery from data >NGUARD+: An Attention-based Game Bot Detection Framework via Player Behavior Sequences
【24h】

NGUARD+: An Attention-based Game Bot Detection Framework via Player Behavior Sequences

机译:nguard +:通过播放器行为序列的基于注意的游戏机器人检测框架

获取原文
获取原文并翻译 | 示例

摘要

Game bots are automated programs that assist cheating users, leading to an imbalance in the game ecosystem and the collapse of user interest. Online games provide immersive gaming experience and attract many loyal fans. However, game bots have proliferated in volume and method, evolving with the real-world detection methods and showing strong diversity, leaving game bot detection efforts extremely difficult. Existing game bot detection techniques mostly rely on handcrafted features or time-series based features instead of fully utilizing player behavior sequences. In this regard, a more reasonable way should be learning user patterns from player behavior sequences when facing the fast-changing nature of game bots. Here we propose a general game bot detection framework for massively multiplayer online role playing games termed NGUARD+ (denoting NetEase Games' Guard), which captures user patterns in order to identify game bots from player behavior sequences. NGUARD+ mainly employs attention-based methods to automatically differentiate game bots from humans. We provide a combination of supervised and unsupervised methods for game bot detection to detect game bots and new type of game bots even when the labels of game bots are limited. Specifically, we propose the following two variants for attention-based sequence modeling: Attention based Bidirectional Long Short-Term Memory Networks (ABLSTM) and Hierarchical Self-Attention Network (HSAN) as our supervised models. ABLSTM is keen on inducing certain inductive biases which makes learning more reasonable as well as capturing local dependency and global information, while HSAN could handle much longer behavior sequences with less memory and higher computational efficiency. Experiments conducted on a real-world dataset show that NGUARD+ can achieve remarkable performance improvement compared to traditional methods. Moreover, NGUARD+ can reveal outstanding robustness for game bots in mutated patterns and even in completely unseen patterns.
机译:游戏机器人是协助作弊用户的自动化程序,导致游戏生态系统的不平衡和用户兴趣的崩溃。在线游戏提供沉浸式游戏体验并吸引许多忠实的粉丝。然而,游戏机器人的体积和方法具有增殖,与现实世界的检测方法的发展,并显示出强大的多样性,离开游戏机器人检测努力极为困难。现有的游戏机器人检测技术主要依赖于手工特征或基于时间序列的特征,而不是充分利用玩家行为序列。在这方面,在面对游戏机的快速改变性质时,更合理的方式应该是从玩家行为序列的学习用户模式。在这里,我们提出了一般的游戏机BOT检测框架,用于播放Game的MateLive MultiPlayer在线角色播放Nuard +(表示网易游戏的保护),捕获用户模式以识别来自玩家行为序列的游戏机器人。 NGUARD +主要采用基于注意的方法来自动区分人类的游戏机器人。我们提供了监督和无人监督的游戏机检测方法的组合,以检测游戏机器机器人和新型游戏机机器,即使游戏机器人的标签有限。具体而言,我们提出了以下基于关注的序列建模的两个变体:作为我们监督模型的受关注的双向短期内存网络(ABLSTM)和分层自​​我关注网络(HSAN)。 ABLSTM热衷于诱导某些感应偏差,这使得学习更合理以及捕获本地依赖和全局信息,而HSAN可以处理具有较少内存和更高的计算效率的更长的行为序列。在真实的数据集上进行的实验表明,与传统方法相比,Nguard +可以实现显着的性能改进。此外,NGUARD +可以揭示突变模式中的游戏机器人的突出稳健性,甚至在完全看不见的模式中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号