首页> 外文期刊>ACM transactions on knowledge discovery from data >A Regularization Approach to Learning Task Relationships in Multitask Learning
【24h】

A Regularization Approach to Learning Task Relationships in Multitask Learning

机译:多任务学习中学习任务关系的正则化方法

获取原文
获取原文并翻译 | 示例

摘要

Multitask learning is a learning paradigm that seeks to improve the generalization performance of a learning task with the help of some other related tasks. In this article, we propose a regularization approach to learning the relationships between tasks in multitask learning. This approach can be viewed as a novel generalization of the regularized formulation for single-task learning. Besides modeling positive task correlation, our approach-multitask relationship learning (MTRL)-can also describe negative task correlation and identify outlier tasks based on the same underlying principle. By utilizing a matrix-variate normal distribution as a prior on the model parameters of all tasks, our MTRL method has a jointly convex objective function. For efficiency, we use an alternating method to learn the optimal model parameters for each task as well as the relationships between tasks. We study MTRL in the symmetric multitask learning setting and then generalize it to the asymmetric setting as well. We also discuss some variants of the regularization approach to demonstrate the use of other matrix-variate priors for learning task relationships. Moreover, to gain more insight into our model, we also study the relationships between MTRL and some existing multitask learning methods. Experiments conducted on a toy problem as well as several benchmark datasets demonstrate the effectiveness of MTRL as well as its high interpretability revealed by the task covariance matrix.
机译:多任务学习是一种学习范例,旨在借助其他一些相关任务来提高学习任务的泛化性能。在本文中,我们提出了一种正则化方法来学习多任务学习中任务之间的关系。这种方法可以看作是针对单任务学习的正则化公式的新颖概括。除了为正任务关联建模之外,我们的方法-多任务关系学习(MTRL)还可以描述负任务关联,并基于相同的基本原理识别异常任务。通过利用矩阵变量正态分布作为所有任务模型参数的先验,我们的MTRL方法具有联合凸目标函数。为了提高效率,我们使用一种交替方法来学习每个任务的最佳模型参数以及任务之间的关系。我们在对称多任务学习环境中研究MTRL,然后将其推广到非对称环境中。我们还讨论了正则化方法的一些变体,以演示使用其他矩阵变数先验来学习任务关系。此外,为了更深入地了解我们的模型,我们还研究了MTRL与一些现有的多任务学习方法之间的关系。针对玩具问题以及几个基准数据集进行的实验证明了MTRL的有效性以及任务协方差矩阵所揭示的高度可解释性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号