首页> 外文期刊>ACM transactions on knowledge discovery from data >Inferring Dynamic Diffusion Networks in Online Media
【24h】

Inferring Dynamic Diffusion Networks in Online Media

机译:推断在线媒体中的动态扩散网络

获取原文
获取原文并翻译 | 示例

摘要

Online media play an important role in information societies by providing a convenient infrastructure for different processes. Information diffusion that is a fundamental process taking place on social and information networks has been investigated in many studies. Research on information diffusion in these networks faces two main challenges: (1) In most cases, diffusion takes place on an underlying network, which is latent and its structure is unknown. (2) This latent network is not fixed and changes over time. In this article, we investigate the diffusion network extraction (DNE) problem when the underlying network is dynamic and latent. We model the diffusion behavior (existence probability) of each edge as a stochastic process and utilize the Hidden Markov Model (HMM) to discover the most probable diffusion links according to the current observation of the diffusion process, which is the infection time of nodes and the past diffusion behavior of links. We evaluate the performance of our Dynamic Diffusion Network Extraction (DDNE) method, on both synthetic and real datasets. Experimental results show that the performance of the proposed method is independent of the cascade transmission model and outperforms the state of art method in terms of F-measure.
机译:通过为不同过程提供便利的基础结构,在线媒体在信息社会中发挥着重要作用。在许多研究中已经研究了作为社会和信息网络上发生的基本过程的信息传播。这些网络中的信息传播研究面临两个主要挑战:(1)在大多数情况下,传播发生在潜在的底层网络上,其结构未知。 (2)此潜在网络不是固定的,并且会随时间变化。在本文中,我们研究了底层网络是动态的和潜在的时的扩散网络提取(DNE)问题。我们将每个边缘的扩散行为(存在概率)建模为一个随机过程,并根据当前对扩散过程的观察,利用隐马尔可夫模型(HMM)来发现最可能的扩散链接,这是节点和节点的感染时间。链接的过去传播行为。我们评估了动态扩散网络提取(DDNE)方法在合成和真实数据集上的性能。实验结果表明,该方法的性能与级联传输模型无关,并且在F度量方面优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号