首页> 外文期刊>ACM transactions on knowledge discovery from data >Heterogeneous Translated Hashing: A Scalable Solution Towards Multi-Modal Similarity Search
【24h】

Heterogeneous Translated Hashing: A Scalable Solution Towards Multi-Modal Similarity Search

机译:异构翻译哈希:面向多模态相似性搜索的可扩展解决方案

获取原文
获取原文并翻译 | 示例

摘要

Multi-modal similarity search has attracted considerable attention to meet the need of information retrieval across different types of media. To enable efficient multi-modal similarity search in large-scale databases recently, researchers start to study multi-modal hashing. Most of the existing methods are applied to search across multi-views among which explicit correspondence is provided. Given a multi-modal similarity search task, we observe that abundant multi-view data can be found on the Web which can serve as an auxiliary bridge. In this paper, we propose a Heterogeneous Translated Hashing (HTH) method with such auxiliary bridge incorporated not only to improve current multi-view search but also to enable similarity search across heterogeneous media which have no direct correspondence. HTH provides more flexible and discriminative ability by embedding heterogeneous media into different Hamming spaces, compared to almost all existing methods that map heterogeneous data in a common Hamming space. We formulate a joint optimization model to learn hash functions embedding heterogeneous media into different Hamming spaces, and a translator aligning different Hamming spaces. The extensive experiments on two real-world datasets, one publicly available dataset of Flickr, and the other MIRFLICKR-Yahoo Answers dataset, highlight the effectiveness and efficiency of our algorithm.
机译:多模式相似性搜索已经吸引了相当多的关注,以满足跨不同类型媒体的信息检索需求。为了在大型数据库中实现有效的多模式相似性搜索,研究人员开始研究多模式哈希。大多数现有方法被应用于跨多视图的搜索,其中提供了明确的对应关系。给定多模式相似性搜索任务,我们观察到可以在Web上找到大量的多视图数据,这些数据可以用作辅助桥梁。在本文中,我们提出了一种包含这种辅助桥的异构翻译哈希(HTH)方法,不仅可以改善当前的多视图搜索,而且还可以跨没有直接对应关系的异构媒体进行相似性搜索。与几乎所有在公共汉明空间中映射异构数据的现有方法相比,HTH通过将异构媒体嵌入到不同的汉明空间中,提供了更大的灵活性和判别能力。我们制定了一个联合优化模型,以学习将异构媒体嵌入到不同汉明空间中的哈希函数,以及一个将不同汉明空间对齐的转换器。在两个真实世界的数据集上进行了广泛的实验,一个是Flickr的公开可用数据集,另一个是MIRFLICKR-Yahoo Answers数据集,突出了我们算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号