首页> 外文期刊>ACM transactions on knowledge discovery from data >G-Rol: Automatic Region-of-Interest Detection Driven by Geotagged Social Media Data
【24h】

G-Rol: Automatic Region-of-Interest Detection Driven by Geotagged Social Media Data

机译:G-Rol:由地理标记的社交媒体数据驱动的自动兴趣区域检测

获取原文
获取原文并翻译 | 示例

摘要

Geotagged data gathered from social media can be used to discover interesting locations visited by users called (R) Places-of-Interest (PoIs). Since a Pol is generally identified by the geographical coordinates of a single point, it is hard to match it with user trajectories. Therefore, it is useful to define an area, called Region-of-Interest (RoI) to represent the boundaries of the PoI's area. RoI mining techniques are aimed at discovering ROIs from Pols and other data. Existing RoI mining techniques are based on three main approaches: predefined shapes, density-based clustering, and grid-based aggregation. This article proposes G-RoI, a novel RoI mining technique that exploits the indications contained in geotagged social media items to discover RoIs with a high accuracy. Experiments performed over a set of Pols in Rome and Paris using social media geotagged data, demonstrate that G-RoI in most cases achieves better results than existing techniques. In particular, the mean F-1 score is 0.34 higher than that obtained with the well-known DBSCAN algorithm in Rome RoIs and 0.23 higher in Paris RoIs.
机译:从社交媒体收集的经过地理标记的数据可用于发现被称为(R)兴趣场所(PoI)的用户访问的有趣位置。由于Pol通常由单个点的地理坐标标识,因此很难将其与用户轨迹进行匹配。因此,定义一个称为兴趣区域(RoI)的区域以表示PoI区域的边界很有用。 RoI挖掘技术旨在从Pols和其他数据中发现ROI。现有的RoI挖掘技术基于三种主要方法:预定义形状,基于密度的聚类和基于网格的聚合。本文提出了G-RoI,这是一种新颖的RoI挖掘技术,可利用带有地理标签的社交媒体项中包含的指示来高精度地发现RoI。使用社交媒体地理标记数据在罗马和巴黎的一组Pols上进行的实验表明,G-RoI在大多数情况下比现有技术可获得更好的结果。特别是,F-1的平均得分比在罗马RoIs中使用著名的DBSCAN算法获得的分数高0.34,而在巴黎RoIs中则是0.23。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号