首页> 外文期刊>ACM transactions on knowledge discovery from data >Multi-task Information Bottleneck Co-clustering for Unsupervised Cross-view Human Action Categorization
【24h】

Multi-task Information Bottleneck Co-clustering for Unsupervised Cross-view Human Action Categorization

机译:多任务信息瓶颈协同聚类,用于无监督的跨视图人类行为分类

获取原文
获取原文并翻译 | 示例

摘要

The widespread adoption of low-cost cameras generates massive amounts of videos recorded from different viewpoints every day. To cope with this vast amount of unlabeled and heterogeneous data, a new multi-task information bottleneck co-clustering (MIBC) approach is proposed to automatically categorize human actions in collections of unlabeled cross-view videos. Our motivation is that, if a learning action category from each view is seen as a single task, it is reasonable to assume that the tasks of learning action patterns from the videos recorded by multiple cameras are dependent and inter-related, since the actions of the same subjects synchronously recorded from different camera viewpoints are complementary to each other. MIBC aims to transfer the shared view knowledge across multiple tasks (i.e., camera viewpoints) to boost the performance of each task. Specifically, MIBC involves the following two parts: (1) extracting action categories for each task by independently maintaining its own relevant information, and (2) allowing the feature representations of all tasks to be compressed into a common feature space, which is utilized to capture the relatedness of multiple tasks and transfer the shared knowledge across different camera viewpoints. These two parts of MIBC work simultaneously and can be solved in a novel co-clustering mechanism. Our experimental evaluation on several cross-viewaction collections shows that the MIBC algorithm outperforms the existing state-of-the-art baselines.
机译:低成本摄像机的广泛采用每天产生大量从不同角度录制的视频。为了应对大量的未标记和异构数据,提出了一种新的多任务信息瓶颈共同聚类(MIBC)方法,以自动将未标记交叉视图视频集合中的人类行为归类。我们的动机是,如果将每个视图中的学习动作类别视为一项任务,则可以合理地假设从多个摄像机录制的视频中学习动作模式的任务是相互依赖的,因为从不同的相机视角同步录制的相同主体彼此互补。 MIBC旨在在多个任务(即摄像机视点)之间传递共享的视图知识,以提高每个任务的性能。具体而言,MIBC包括以下两个部分:(1)通过独立维护其自身的相关信息来提取每个任务的动作类别,以及(2)允许将所有任务的特征表示压缩到一个公共特征空间中,以用于捕获多个任务的相关性,并在不同的相机视点之间传递共享的知识。 MIBC的这两个部分可以同时工作,并且可以通过新颖的共聚机制解决。我们对多个跨视角动作集合的实验评估表明,MIBC算法的性能优于现有的最新基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号