首页> 外文期刊>ACM transactions on knowledge discovery from data >Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification
【24h】

Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification

机译:分类中大规模特征选择的自适应粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

Many evolutionary computation (EC) methods have been used to solve feature selection problems and they perform well on most small-scale feature selection problems. However, as the dimensionality of feature selection problems increases, the solution space increases exponentially. Meanwhile, there are more irrelevant features than relevant features in datasets, which leads to many local optima in the huge solution space. Therefore, the existing EC methods still suffer from the problem of stagnation in local optima on large-scale feature selection problems. Furthermore, large-scale feature selection problems with different datasets may have different properties. Thus, it may be of low performance to solve different large-scale feature selection problems with an existing EC method that has only one candidate solution generation strategy (CSGS). In addition, it is time-consuming to find a suitable EC method and corresponding suitable parameter values for a given large-scale feature selection problem if we want to solve it effectively and efficiently. In this article, we propose a self-adaptive particle swarm optimization (SaPSO) algorithm for feature selection, particularly for large-scale feature selection. First, an encoding scheme for the feature selection problem is employed in the SaPSO. Second, three important issues related to self-adaptive algorithms are investigated. After that, the SaPSO algorithm with a typical self-adaptive mechanism is proposed. The experimental results on 12 datasets show that the solution size obtained by the SaPSO algorithm is smaller than its EC counterparts on all datasets. The SaPSO algorithm performs better than its non-EC and EC counterparts in terms of classification accuracy not only on most training sets but also on most test sets. Furthermore, as the dimensionality of the feature selection problem increases, the advantages of SaPSO become more prominent. This highlights that the SaPSO algorithm is suitable for solving feature selection problems, particularly large-scale feature selection problems.
机译:许多进化计算(EC)方法已用于解决特征选择问题,并且它们在大多数小规模特征选择问题上表现良好。但是,随着特征选择问题的维数增加,解决方案空间呈指数增长。同时,数据集中不相关的特征多于相关的特征,这导致巨大的解空间中存在许多局部最优解。因此,现有的EC方法在大规模特征选择问题上仍然遭受局部最优的停滞问题。此外,具有不同数据集的大规模特征选择问题可能具有不同的属性。因此,利用仅具有一个候选解决方案生成策略(CSGS)的现有EC方法来解决不同的大规模特征选择问题的性能可能较低。另外,如果我们想有效地解决它,那么对于给定的大规模特征选择问题,找到合适的EC方法和相应的合适参数值是很耗时的。在本文中,我们提出了一种用于特征选择(尤其是大规模特征选择)的自适应粒子群优化(SaPSO)算法。首先,在SaPSO中采用了针对特征选择问题的编码方案。其次,研究了与自适应算法有关的三个重要问题。之后,提出了具有典型自适应机制的SaPSO算法。在12个数据集上的实验结果表明,在所有数据集上,由SaPSO算法获得的解的大小均小于其EC对应项。就分类准确性而言,SaPSO算法不仅在大多数训练集上而且在大多数测试集上都比非EC和EC同类算法更好。此外,随着特征选择问题的维数增加,SaPSO的优势变得更加突出。这凸显了SaPSO算法适合解决特征选择问题,特别是大规模特征选择问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号