首页> 外文期刊>ACM transactions on knowledge discovery from data >Exploiting Viral Marketing for Location Promotion in Location-Based Social Networks
【24h】

Exploiting Viral Marketing for Location Promotion in Location-Based Social Networks

机译:利用病毒式营销在基于位置的社交网络中促进位置

获取原文
获取原文并翻译 | 示例

摘要

With the explosion of smartphones and social network services, location-based social networks (LBSNs) are increasingly seen as tools for businesses (e.g., restaurants and hotels) to promote their products and services. In this article, we investigate the key techniques that can help businesses promote their locations by advertising wisely through the underlying LBSNs. In order to maximize the benefit of location promotion, we formalize it as an influence maximization problem in an LBSN, i.e., given a target location and an LBSN, a set of k users (called seeds) should be advertised initially such that they can successfully propagate and attract many other users to visit the target location. Existing studies have proposed different ways to calculate the information propagation probability, that is, how likely it is that a user may influence another, in the setting of a static social network. However, it is more challenging to derive the propagation probability in an LBSN since it is heavily affected by the target location and the user mobility, both of which are dynamic and query dependent. This article proposes two user mobility models, namely the Gaussian-based and distance-based mobility models, to capture the check-in behavior of individual LBSN users, based on which location-aware propagation probabilities can be derived. Extensive experiments based on two real LBSN datasets have demonstrated the superior effectiveness of our proposals compared with existing static models of propagation probabilities to truly reflect the information propagation in LBSNs.
机译:随着智能手机和社交网络服务的爆炸式增长,基于位置的社交网络(LBSN)越来越被视为企业(例如,饭店和旅馆)推广其产品和服务的工具。在本文中,我们研究了可通过基本LBSN明智地投放广告来帮助企业提升位置的关键技术。为了最大化位置提升的收益,我们将其形式化为LBSN中的影响最大化问题,即,给定目标位置和LBSN,最初应宣传一组k个用户(称为种子),以便他们可以成功传播并吸引许多其他用户访问目标位置。现有研究提出了不同的方法来计算信息传播概率,即在静态社交网络的设置中,用户可能会影响另一个用户的可能性。但是,在LBSN中推导传播概率更具挑战性,因为它受到目标位置和用户移动性的严重影响,而目标位置和用户移动性都是动态的并且依赖于查询。本文提出了两个用户移动性模型,即基于高斯的移动性模型和基于距离的移动性模型,以捕获各个LBSN用户的签到行为,从而可以得出位置感知的传播概率。基于两个真实LBSN数据集的大量实验表明,与现有的传播概率静态模型相比,我们的建议具有更高的有效性,可以真实地反映LBSN中的信息传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号